In the present study, two indices of acute intestinal permeability changes were investigated as measurements of drug induced intestinal damage. The first method was based on 14C-polyethylene glycol (PEG) 4000 permeability assessment and the second was based on histological evaluation of the intestine. The test compounds were ibuprofen, ketoprofen and naproxen and the alanine, glycine and phenylalanine amide derivatives of ibuprofen. Perfusion studies were carried out using a rat model. Post-perfusion, the gut was fixed and tissue changes were assessed and scored. Ibuprofen, ketoprofen and naproxen altered the barrier properties of the intestine to PEG 4000 with significantly higher scores (p<0.05) for gastrointestinal toxicity relative to blank buffer. For ketoprofen, PEG 4000 permeability and intestinal damage scores increased with increasing ketoprofen concentration. Ibuprofen amide derivatives did not induce significant histological damage or PEG 4000 permeability when compared with ibuprofen. A correlation coefficient of 0.91 is obtained when intestinal damage scores are plotted against PEG 4000 permeability for all compounds. Both indices are proposed as rapid and useful measures of drug induced acute intestinal damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2006.01.009DOI Listing

Publication Analysis

Top Keywords

drug induced
8
permeability changes
8
peg 4000
8
ibuprofen ketoprofen
8
ketoprofen naproxen
8
comparative assessment
4
assessment indices
4
indices drug
4
induced permeability
4
changes perfused
4

Similar Publications

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.

Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.

View Article and Find Full Text PDF

Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.

View Article and Find Full Text PDF

Background: The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!