Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For the purpose of evaluating the use of 169Yb for prostate High Dose Rate brachytherapy (HDR), a hypothetical 169Yb source is assumed with the exact same design of the new microSelectron source replacing the 192Ir active core by pure 169Yb metal. Monte Carlo simulation is employed for the full dosimetric characterization of both sources and results are compared following the AAPM TG-43 dosimetric formalism. Monte Carlo calculated dosimetry results are incorporated in a commercially available treatment planning system (SWIFT), which features an inverse treatment planning option based on a multiobjective dose optimization engine. The quality of prostate HDR brachytherapy using the real 192Ir and hypothetical 169Yb source is compared in a comprehensive analysis of different prostate implants in terms of the multiobjective dose optimization solutions as well as treatment quality indices such as Dose Volume Histograms (DVH) and the Conformal Index (COIN). Given that scattering overcompensates for absorption in intermediate photon energies and distances in the range of interest to prostate HDR brachytherapy, 169Yb proves at least equivalent to 192Ir irrespective of prostate volume. This has to be evaluated in view of the shielding requirements for the 169Yb energies that are minimal relative to that for 192Ir.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.2126821 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!