Shielded p-silicon diodes, frequently applied in general photon-beam dosimetry, show certain imperfections when applied in the small photon fields occurring in stereotactic or intensity modulated radiotherapy (IMRT), in electron beams and in the buildup region of photon beam dose distributions. Using as a study object the shielded p-silicon diode PTW 60008, well known for its reliable performance in general photon dosimetry, we have identified these imperfections as effects of electron scattering at the metallic parts of the shielding. In order to overcome these difficulties a new, unshielded diode PTW 60012 has been designed and manufactured by PTW Freiburg. By comparison with reference detectors, such as thimble and plane-parallel ionization chambers and a diamond detector, we could show the absence of these imperfections. An excellent performance of the new unshielded diode for the special dosimetric tasks in small photon fields, electron beams and build-up regions of photon beams has been observed. The new diode also has an improved angular response. However, due to its over-response to low-energy scattered photons, its recommended range of use does not include output factor measurements in large photon fields, although this effect can be compensated by a thin auxiliary lead shield.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.2124547DOI Listing

Publication Analysis

Top Keywords

electron beams
12
photon fields
12
shielded p-silicon
8
small photon
8
diode ptw
8
unshielded diode
8
photon
7
diode
5
dosimetric characteristics
4
characteristics unshielded
4

Similar Publications

Electron ptychography, recognized as an ideal technique for low-dose imaging, consistently achieves deep sub-angstrom resolution at electron doses of several thousand electrons per square angstrom (e/Å) or higher. Despite its proven efficacy, the application of electron ptychography at even lower doses-necessary for materials highly sensitive to electron beams-raises questions regarding its feasibility and the attainable resolution under such stringent conditions. Herein, we demonstrate the implementation of near-atomic-resolution ( ~ 2 Å) electron ptychography reconstruction at electron doses as low as ~100 e/Å, for metal-organic frameworks (MOFs), which are known for their extreme sensitivity.

View Article and Find Full Text PDF

Lattice thermal conductivity in CrSBr: the effects of interlayer interaction, magnetic ordering and external strain.

J Phys Condens Matter

January 2025

South China Normal University, School of Physics, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangzhou, 510631, CHINA.

With the continuous development of digital information and big data technologies, the ambient temperature and heat generation during the operation of magnetic storage devices play an increasingly crucial role in ensuring data security and device stability. In this study, we examined the lattice thermal conductivity of the van der Waals magnetic semiconductor CrSBr from bulk to monolayer structures using first-principles calculations and the phonon Boltzmann transport equation. Our results indicated that lattice thermal conductivity show anisotropy and CrSBr bilayer exhibits lower thermal conductivity at all temperatures.

View Article and Find Full Text PDF

The aim of this study was to assess the effect of a chlorhexidine digluconate solution (CHX) applied as an antiproteolytic agent for controlling erosive tooth wear or as part of the adhesive treatment on long-term bond strength to eroded dentin. Dentin specimens were abraded with a 600-grit silicon carbide (SiC) paper for 1 min (sound dentin - S), subsequently treated with 2% CHX for 1 min (with excess removed, followed by a 6-hour rest), and eroded by exposure to Coca-Cola for 5 min, three times a day, for 5 days (CHX-treated and eroded dentin - CHXE), or only eroded (eroded dentin - E). The specimens were acid-etched (15 s), rinsed (30 s), dried (15 s), and rehydrated with 1.

View Article and Find Full Text PDF

Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.

View Article and Find Full Text PDF

Purpose: Randomized trials have demonstrated similar local tumor control in patients treated with accelerated partial-breast irradiation (APBI) compared with whole-breast irradiation. However, the optimal APBI dose for maximizing tumor control and minimizing toxicity is uncertain.

Methods And Materials: We enrolled patients ≥18 years of age with grade 1 or 2 ductal carcinoma in situ or stage I invasive breast cancer and resection margins ≥2 mm between 2003 and 2011 to a sequential dose-escalation trial using 3-dimensional conformal external beam APBI giving twice daily 4 Gy fractions with total doses of 32 Gy, 36 Gy, and 40 Gy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!