Background: Adhesion to extracellular matrix (ECM) proteins and degradation of basement membranes by matrix metalloproteinase (MMP) play important roles in cancer metastasis. In this study, the effects of gefitinib on the enzymatic activity of MMP and adhesion to ECM proteins in the HT29 colon cancer cell line were investigated.

Materials And Methods: Microtiter plates, coated with ECM proteins, were used to investigate the adhesion of cancer cells to ECM proteins. The expression of MMPs was examined by zymography and semiquantitative RT-PCR.

Results: Gefitinib inhibited MMP-9 and MMP-2 secretion and mRNA expression in HT29 cells. Gefitinib also reduced the ability to adhere to laminin and type IV collagen. These effects were observed at such low doses that gefitinib had neither an antiproliferative effect nor the ability to induce apoptosis.

Conclusion: Gefitinib decreased the production of MMPs and the adhesion to ECM proteins, important steps associated with cancer metastasis. These results suggest that gefitinib may have antimetastatic activity in colon cancer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ecm proteins
20
colon cancer
12
matrix metalloproteinase
8
adhesion extracellular
8
extracellular matrix
8
cancer cells
8
cancer metastasis
8
adhesion ecm
8
gefitinib
7
proteins
6

Similar Publications

This study explored a novel modification method for porous polyetheretherketone (PEEK) implants using a biomimetic coating to achieve synergistic enhancement of vascularization and bone regeneration. Inspired by the natural extracellular matrix (ECM) structure (consists of growth factors and matrix proteins), a biomimetic dual-factor coating capable of releasing bone morphogenetic protein-2 (BMP-2) and fibronectin (FN) was coated on the surface of 3D-printed porous PEEK scaffolds using polydopamine (PDA) as a binder. Experiments conducted with MC3T3-E1 cells or HUVECs in co-culture with scaffolds revealed that the biomimetic coating not only synergically promoted cell migration, adhesion and proliferation, but also enhanced angiogenesis and osteogenic differentiation simultaneously in vivo.

View Article and Find Full Text PDF

The purpose of this study was to understand the molecular phenotypes of adipose-derived stem cells (ASCs) and vaginal fibroblasts (VFBs) and whether pelvic organ prolapse (POP) affects their biological properties. We performed RNA sequencing of paired ASCs and VFBs from six patients with POP and six controls (CTRL). The transcriptomes of POP and CTRL in either ASCs or VFBs were compared (DESeq2, false discovery rate (FDR) < 0.

View Article and Find Full Text PDF

The tumor microenvironment (TME) has drawn much interest recently in the search for innovative cancer therapeutics, especially in light of the growing body of evidence supporting the efficacy of immune checkpoint inhibitors (ICIs). The TME comprises various cell types within the extracellular matrix (ECM), such as immune cells, endothelial cells, and cancer-associated fibroblasts (CAFs). Throughout the malignancy, these cells interact with cancerous cells and with one another.

View Article and Find Full Text PDF

Background: Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia.

View Article and Find Full Text PDF

The pericellular function of Fibulin-7 in the adhesion of oligodendrocyte lineage cells to neuronal axons during CNS myelination.

Biochem Biophys Res Commun

January 2025

Department of Molecular and Cellular Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute Science of Tokyo/TMDU, Tokyo, Japan. Electronic address:

Myelin is an electrical insulator that enables saltatory nerve conduction and is essential for proper functioning of the central nervous system (CNS). It is formed by oligodendrocytes (OLs) in the CNS, and during OL development various molecules, including extracellular matrix (ECM) proteins, regulate OL differentiation and myelination; however, the role of ECM proteins in these processes is not well understood. Our present work is centered on the analyses of the expression and function of fibulin-7 (Fbln7), an ECM protein of the fibulin family, in OL differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!