The 1 : 3 Schiff base condensates of tris(2-aminoethyl)amine (tren) or tris(3-aminopropyl)amine (trpn) with 4-methyl-5-imidazolecarboxaldehyde, H3L1 and H3L2, respectively, were generated in situ and used to prepare complexes with manganese(II) and iron(III). The resultant complexes, [MnH3L1](ClO4)2, [MnH3L1](ClO4)2.EtOH.H2O, [MnH3L2](ClO4)2, [FeH3L1](ClO4)3.1.5(EtOH) and [FeHL1](I3) (0.525)(I)(0.475).2.625H2O, have been characterized by EA, IR, ES MS, variable temperature magnetic susceptibility, X-ray crystallography, and Mössbauer spectroscopy for the iron complexes. The three manganese(II) complexes are high spin with [MnH3L2](ClO4)2 exhibiting coordination number seven while the others are six coordinate. [FeH3L1](ClO4)3.1.5(EtOH) has two iron sites, a seven coordinate and a pseudo seven coordinate site. The complex is high spin at room temperature but exhibits a magnetic moment that decreases with temperature corresponding to conversion of one of the sites to low spin. [FeHL1](I3) (0.525)(I)(0.475).2.625H2O is low spin even at room temperature. In the present complexes the apical nitrogen atom, N(ap), of the tripodal ligand is pyramidal and directed toward the metal atom. The data show that the M-N(ap) distance decreases as the oxidation state of the metal increases, as the number of bound imidazole protons on the ligand increases, and as the number of carbon atoms in the backbone of the ligand (tren vs. trpn) increases. In a limiting sense, short M-N(ap) distances result in high spin seven coordinate mono capped octahedral complexes and long M-N(ap) distances result in low spin six coordinate octahedral complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785333PMC
http://dx.doi.org/10.1039/b513282gDOI Listing

Publication Analysis

Top Keywords

high spin
12
low spin
12
manganeseii ironiii
8
complexes
8
oxidation state
8
coordination number
8
[fehl1]i3 0525i04752625h2o
8
spin room
8
room temperature
8
increases number
8

Similar Publications

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Nexus: A versatile console for advanced low-field MRI.

Magn Reson Med

January 2025

Department 8.1 - Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

Purpose: To develop a low-cost, high-performance, versatile, open-source console for low-field MRI applications that can integrate a multitude of different auxiliary sensors.

Methods: A new MR console was realized with four transmission and eight reception channels. The interface cards for signal transmission and reception are installed in PCI Express slots, allowing console integration in a commercial PC rack.

View Article and Find Full Text PDF

Enhancing the Optically Detected Magnetic Resonance Signal of Organic Molecular Qubits.

ACS Cent Sci

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.

In quantum information science and sensing, electron spins are often purified into a specific polarization through an optical-spin interface, a process known as optically detected magnetic resonance (ODMR). Diamond-NV centers and transition metals are both excellent platforms for these so-called color centers, while metal-free molecular analogues are also gaining popularity for their extended polarization lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin π-diradicals, we proposed to spin-polarize by shelving triplet = ±1 populations as singlets.

View Article and Find Full Text PDF

An isolable boron-centered radical anion stabilized by a carbazole moiety.

Dalton Trans

January 2025

Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056002, P. R. China.

The isolation of a stable persistent carbazole-stabilized boron-centered monoradical anion 1˙, which has a high spin density at the B atom, has been reported. It is characterized using the crystal structure and UV-vis absorption spectrum, as well as electron paramagnetic resonance spectroscopy. Interestingly, the B-N bond was activated by the boron-centered radical anion 1˙, which had not been reported before.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!