A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. | LitMetric

A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules.

Nat Cell Biol

Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd., Kansas City, MO 64110, USA.

Published: March 2006

Microtubule-associated proteins (MAPs) use particular microtubule-binding domains that allow them to interact with microtubules in a manner specific to their individual cellular functions. Here, we have identified a highly basic microtubule-binding domain in the p150 subunit of dynactin that is only present in the dynactin members of the CAP-Gly family of proteins. Using single-particle microtubule-binding assays, we found that the basic domain of dynactin moves progressively along microtubules in the absence of molecular motors - a process we term 'skating'. In contrast, the previously described CAP-Gly domain of dynactin remains firmly attached to a single point on microtubules. Further analyses showed that microtubule skating is a form of one-dimensional diffusion along the microtubule. To determine the cellular function of the skating phenomenon, dynein and the dynactin microtubule-binding domains were examined in single-molecule motility assays. We found that the basic domain increased dynein processivity fourfold whereas the CAP-Gly domain inhibited dynein motility. Our data show that the ability of the basic domain of dynactin to skate along microtubules is used by dynein to maintain longer interactions for each encounter with microtubules.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb1370DOI Listing

Publication Analysis

Top Keywords

domain dynactin
16
basic domain
12
microtubule-binding domain
8
dynein processivity
8
microtubule-binding domains
8
assays basic
8
cap-gly domain
8
dynactin
7
microtubules
6
domain
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!