The Gag protein of human immunodeficiency virus type 1 (HIV-1) associates with the envelope protein complex during virus assembly. The available evidence indicates that this interaction involves recognition of the gp41 cytoplasmic tail (CT) by the matrix protein (MA) region of Pr55(Gag). Here we show that substitution of Asp for Leu at position 49 (L49D) in MA results in a specific reduction in particle-associated gp120 without affecting the levels of gp41. Mutant virions were markedly reduced in single-cycle infectivity despite a relatively modest defect in fusion with target cells. Studies with HIV-1 particles containing decreased levels of envelope proteins suggested that the L49D mutation also inhibits a postentry step in infection. Truncation of the gp41 tail, or pseudotyping by vesicular stomatitis virus glycoprotein, restored both the fusion and infectivity of L49D mutant virions to wild-type levels. Truncation of gp41 also resulted in equivalent levels of gp120 on particles with and without the MA mutation and enhanced the replication of the L49D mutant virus in T cells. The impaired fusion and infectivity of L49D mutant particles were also complemented by a single point mutation in the gp41 CT that disrupted the tyrosine-containing endocytic motif. Our results suggest that an altered interaction between the MA domain of Gag and the gp41 cytoplasmic tail leads to dissociation of gp120 from gp41 during HIV-1 particle assembly, thus resulting in impaired fusion and infectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395406PMC
http://dx.doi.org/10.1128/JVI.80.5.2405-2417.2006DOI Listing

Publication Analysis

Top Keywords

fusion infectivity
12
l49d mutant
12
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
gag protein
8
envelope protein
8
gp41
8
gp120 gp41
8
gp41 cytoplasmic
8

Similar Publications

Immunomodulatory activity of Trypanosoma cruzi recombinant antigen combination TSA-1-C4 and Tc24-C4 induce activation of macrophages and CD8 T cells.

Parasitol Res

January 2025

Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico.

Chagas disease is a chronic infection caused by the protozoan parasite, Trypanosoma cruzi, with limited benefits of the currently available anti-parasitic chemotherapeutic approaches to halt the progression of heart disease. Recombinant TSA-1-C4 and Tc24-C4 proteins have been developed as promising antigen candidates for therapeutic vaccines, leading to propose them in combination as a bivalent recombinant protein strategy. In this study, we evaluated the immunomodulatory effect of the combined TSA-1-C4 and Tc24-C4 recombinant proteins by in vitro assays using murine macrophages.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) causes the most common type of severe lower respiratory tract infection worldwide, and the fusion (F) protein is a target for neutralizing antibodies and vaccine development. This study aimed to investigate the immunogenicity and efficacy of an mRNA-based RSV vaccine with an F protein sequence.

Methods: We designed an mRNA construct encoding a modified RSV F protein, which was further developed into an LNP-encapsulated mRNA vaccine (LVRNA007).

View Article and Find Full Text PDF

Developing an Effective Therapeutic HPV Vaccine to Eradicate Large Tumors by Genetically Fusing Xcl1 and Incorporating IL-9 as Molecular Adjuvants.

Vaccines (Basel)

January 2025

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Background: Human papillomavirus (HPV) is a prevalent infection affecting both men and women, leading to various cytological lesions. Therapeutic vaccines mount a HPV-specific CD8+ cytotoxic T lymphocyte response, thus clearing HPV-infected cells. However, no therapeutic vaccines targeting HPV are currently approved for clinical treatment due to limited efficacy.

View Article and Find Full Text PDF

Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus.

Vaccines (Basel)

January 2025

Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA.

The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner.

View Article and Find Full Text PDF

Favorable Nonclinical Safety Profile of RSVpreF Bivalent Vaccine in Rats and Rabbits.

Vaccines (Basel)

December 2024

Drug Safety Research and Development, Pfizer Research & Development, Pearl River, NY 10965, USA.

: Respiratory syncytial virus (RSV) infections usually cause mild, cold-like symptoms in most people, but are a leading infectious disease causing infant death and hospitalization and can result in increased morbidity and mortality in older adults and at-risk individuals. Pfizer has developed Abrysvo, an unadjuvanted bivalent recombinant protein subunit vaccine containing prefusion-stabilized fusion (F) proteins representing RSV A and RSV B subgroups (RSVpreF). It is the only RSV vaccine approved for both maternal immunization to protect infants and active immunization of older adults (≥60 years) and 18-59-year-old individuals with high-risk conditions for prevention of RSV disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!