RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication.

J Virol

Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, 94720-7360, USA.

Published: March 2006

Dengue virus is a positive-strand RNA virus and a member of the genus Flavivirus, which includes West Nile, yellow fever, and tick-borne encephalitis viruses. Flavivirus genomes are translated as a single polyprotein that is subsequently cleaved into 10 proteins, the first of which is the viral capsid (C) protein. Dengue virus type 2 (DENV2) and other mosquito-borne flaviviruses initiate translation of C from a start codon in a suboptimal context and have multiple in-frame AUGs downstream. Here, we show that an RNA hairpin structure in the capsid coding region (cHP) directs translation start site selection in human and mosquito cells. The ability of the cHP to direct initiation from the first start codon is proportional to its thermodynamic stability, is position dependent, and is sequence independent, consistent with a mechanism in which the scanning initiation complex stalls momentarily over the first AUG as it begins to unwind the cHP. The cHP of tick-borne flaviviruses is not maintained in a position to influence start codon selection, which suggests that this coding region cis element may serve another function in the flavivirus life cycle. Here, we demonstrate that the DENV2 cHP and both the first and second AUGs of C are necessary for efficient viral replication in human and mosquito cells. While numerous regulatory elements have been identified in the untranslated regions of RNA viral genomes, we show that the cHP is a coding-region RNA element that directs start codon selection and is required for viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395379PMC
http://dx.doi.org/10.1128/JVI.80.5.2170-2182.2006DOI Listing

Publication Analysis

Top Keywords

start codon
20
coding region
12
dengue virus
12
translation start
12
codon selection
12
viral replication
12
virus type
8
directs translation
8
selection required
8
required viral
8

Similar Publications

mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG.

View Article and Find Full Text PDF

Comparative analysis of the complete chloroplast genome of seven Wikstroemia taxa (Thymelaeaceae) provides insights into the genome structure and phylogenetic relationships.

Planta

January 2025

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China.

New insights into the phylogeny of species in the family Thymelaeaceae and support of the recognition of D. genkwa and D. aurantiaca as species in the genus Wikstroemia are provided.

View Article and Find Full Text PDF

Complete mitochondrial genome assembly and comparative analysis of Colocasia esculenta.

BMC Plant Biol

January 2025

Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.

Colocasia esculenta ranks as the fifth most important tuber crop and is known for its high nutritional and medicinal value. However, there is no research on its mitochondrial genome, hindering in-depth exploration of its genomic resources and genetic relationships. Using second- and third-generation sequencing technologies, we assembled and annotated the mitogenome of C.

View Article and Find Full Text PDF

40S ribosomal subunits scan mRNA for the start codon by one-dimensional diffusion.

bioRxiv

January 2025

Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA.

During eukaryotic translation initiation, the small (40S) ribosomal subunit is recruited to the 5' cap and subsequently scans the 5' untranslated region (5' UTR) of mRNA in search of the start codon. The molecular mechanism of mRNA scanning remains unclear. Here, using GFP reporters in cells, we show that order-of-magnitude variations in the lengths of unstructured 5' UTRs have a modest effect on protein synthesis.

View Article and Find Full Text PDF

Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!