Asthma is a ubiquitous disease with a broad range of clinical phenotypes. To better understand the complex genetic and environmental interactions underlying asthma, we compared the gene-gene interactions of four genetically distinct mouse strains that demonstrate biologically distinct responses to allergen. Using DNA microarrays and knock-out mouse studies, we showed that CCR5 plays a definitive role in the development of ovalbumin-induced allergic airway inflammatory disease. In addition, gene expression profiling data have revealed other potential novel targets for therapeutics-based research and has enhanced the understanding of the molecular mechanisms underlying the etiology of "asthma."
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644233 | PMC |
http://dx.doi.org/10.1165/rcmb.2005-0314OC | DOI Listing |
Microbiol Res
December 2024
International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco. Electronic address:
The plant rhizosphere microbiome plays a crucial role in plant growth and health. Within this microbiome, bacteria dominate, exhibiting traits that benefit plants, such as facilitating nutrient acquisition, fixing nitrogen, controlling pathogens, and promoting root growth. This study focuses on designing synthetic bacterial consortia using key bacterial strains which have been mapped and then isolated from the sorghum rhizosphere microbiome.
View Article and Find Full Text PDFMicrob Biotechnol
December 2024
Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
Commercial probiotics are often formulated as multi-strain cocktails, but the effects of social interactions, particularly between strains of a species, are often neglected, despite their potential to contribute to higher-order interactions where these interactions could affect those with a third party. In this study, we investigated the probiotic potential of a collection of Bacillus subtilis strains against Salmonella Typhimurium in single-strain and mixed cultures. The results indicate a promising probiotic potential of B.
View Article and Find Full Text PDFEnviron Microbiome
December 2024
Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia.
Background: Herbicides are integral to agricultural weed management but can adversely affect non-target organisms, soil health, and microbiome. We investigated the effects of herbicides on the total soil bacterial community composition using 16S rRNA gene amplicon community profiling. Further, we aimed to identify herbicide-tolerant bacteria with plant growth-promoting (PGP) capabilities as a mitigative strategy for these negative effects, thereby promoting sustainable agricultural practices.
View Article and Find Full Text PDFJ Med Microbiol
November 2024
Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad 45320, Pakistan.
Obesity is a global health concern, affecting individuals of all ages and genders. One promising strategy to combat obesity is by addressing gut microbiota dysbiosis, with probiotics being a reliable intervention. However, single-strain probiotics may not effectively modulate the complex microbial communities in the gut, suggesting the need for multi-strain approaches.
View Article and Find Full Text PDFmSystems
November 2024
Department of Plant Pathology, University of Minnesota, Twin Cities, Minnesota, USA.
Goss's wilt and leaf blight of maize is an economically important disease caused by the Gram-positive bacterium, (). Little is known about the ecology and pathogenesis of this bacterium. Here, we used phenotypic assays and a high-throughput whole-genome sequencing approach to explore among-strain variation in virulence and multistrain reproductive success .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!