We have previously shown that intracerebroventricular (i.c.v.) infusion of amyloid-beta (Abeta)1-40 produces oxidative stress and cholinergic dysfunction, as well as learning and memory deficits, in rats. In the present study, effects of a newly synthesized azaindolizinone derivative, spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-one (ZSET1446), were assessed in rats with learning deficits induced by Abeta1-40 or scopolamine. The i.c.v. infusion of Abeta1-40 caused impairments in spontaneous alternation behavior in a Y-maze task, spatial reference and short-term memory in a water-maze task, and retention of passive-avoidance learning. Abeta1-40-infused rats also showed reduction in choline acetyltransferase (ChAT) activity in the medial septum and hippocampus, but not in the basal forebrain and cortex, and a decrease in glutathione S-transferase (GST)-like immunoreactivity in the cortex. Nicotine-stimulated acetylcholine (ACh) release in Abeta1-40-infused rats was lower than that in vehicle-infused rats. Oral administration of ZSET1446 at the dose range of 0.01 to 1 mg/kg ameliorated Abeta1-40-induced learning impairment in Y-maze, water-maze, and passive-avoidance tasks. ZSET1446 reversed the decrease of ChAT activity in the medial septum and hippocampus, GST-like immunoreactivity in the cortex, and nicotine-stimulated ACh release of Abeta1-40-treated rats to the levels of vehicle-infused control rats. Furthermore, 0.001 to 0.1 mg/kg ZSET1446 showed ameliorative effects on learning impairments caused by scopolamine in a passive-avoidance task. These results suggest that ZSET1446 may be a potential candidate for development as a therapeutic agent to manage cognitive impairment associated with conditions such as Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.105.098640 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!