Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigates the role of the mitochondrial ATP-sensitive K+ channel (mitoKATP) in response to positive inotropic stress. In Langendorff-perfused rat hearts, inotropy was induced by increasing perfusate calcium to 4 mM, by adding 80 microM ouabain or 0.25 microM dobutamine. Each of these treatments resulted in a sustained increase in rate-pressure product (RPP) of approximately 60%. Inhibition of mitoKATP by perfusion of 5-hydroxydecanoate (5-HD) or tetraphenylphosphonium before induction of inotropic stress resulted in a marked attenuation of RPP. Inhibition of mitoKATP after induction of stress caused the inability of the heart to maintain a high-work state. In human atrial fibers, the increase in contractility induced by dobutamine was inhibited 60% by 5-HD. In permeabilized fibers from the Langendorff-perfused rat hearts, inhibition of mitoKATP resulted, in all cases, in an alteration of adenine nucleotide compartmentation, as reflected by a 60% decrease in the half-saturation constant for ADP [K1/2 (ADP)]. We conclude that opening of cardiac mitoKATP is essential for an appropriate response to positive inotropic stress and propose that its involvement proceeds through the prevention of stress-induced decrease in mitochondrial matrix volume. These results indicate a physiological role for mitoKATP in inotropy and, by extension, in heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01233.2005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!