Z-DNA-forming sequences generate large-scale deletions in mammalian cells.

Proc Natl Acad Sci U S A

Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957, USA.

Published: February 2006

Spontaneous chromosomal breakages frequently occur at genomic hot spots in the absence of DNA damage and can result in translocation-related human disease. Chromosomal breakpoints are often mapped near purine-pyrimidine Z-DNA-forming sequences in human tumors. However, it is not known whether Z-DNA plays a role in the generation of these chromosomal breakages. Here, we show that Z-DNA-forming sequences induce high levels of genetic instability in both bacterial and mammalian cells. In mammalian cells, the Z-DNA-forming sequences induce double-strand breaks nearby, resulting in large-scale deletions in 95% of the mutants. These Z-DNA-induced double-strand breaks in mammalian cells are not confined to a specific sequence but rather are dispersed over a 400-bp region, consistent with chromosomal breakpoints in human diseases. This observation is in contrast to the mutations generated in Escherichia coli that are predominantly small deletions within the repeats. We found that the frequency of small deletions is increased by replication in mammalian cell extracts. Surprisingly, the large-scale deletions generated in mammalian cells are, at least in part, replication-independent and are likely initiated by repair processing cleavages surrounding the Z-DNA-forming sequence. These results reveal that mammalian cells process Z-DNA-forming sequences in a strikingly different fashion from that used by bacteria. Our data suggest that Z-DNA-forming sequences may be causative factors for gene translocations found in leukemias and lymphomas and that certain cellular conditions such as active transcription may increase the risk of Z-DNA-related genetic instability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413824PMC
http://dx.doi.org/10.1073/pnas.0511084103DOI Listing

Publication Analysis

Top Keywords

z-dna-forming sequences
24
mammalian cells
24
large-scale deletions
12
chromosomal breakages
8
chromosomal breakpoints
8
sequences induce
8
genetic instability
8
double-strand breaks
8
small deletions
8
z-dna-forming
7

Similar Publications

AIRE is an unconventional transcription factor that enhances the expression of thousands of genes in medullary thymic epithelial cells and promotes clonal deletion or phenotypic diversion of self-reactive T cells. The biological logic of AIRE's target specificity remains largely unclear as, in contrast to many transcription factors, it does not bind to a particular DNA sequence motif. Here we implemented two orthogonal approaches to investigate AIRE's cis-regulatory mechanisms: construction of a convolutional neural network and leveraging natural genetic variation through analysis of F1 hybrid mice.

View Article and Find Full Text PDF

Z-DNA, a well-known non-canonical form of DNA involved in gene regulation, is often found in gene promoters. Transposable elements (TEs), which make up 45% of the human genome, can move from one location to another within the genome. TEs play various biological roles in host organisms, and like Z-DNA, can influence transcriptional regulation near promoter regions.

View Article and Find Full Text PDF

Identifying roles for Z-DNA remains challenging given their dynamic nature. Here, we perform genome-wide interrogation with the DNABERT transformer algorithm trained on experimentally identified Z-DNA forming sequences (Z-flipons). The algorithm yields large performance enhancements (F1 = 0.

View Article and Find Full Text PDF

Different from the canonical right-handed B-DNA, a left-handed Z-DNA forms an alternating syn- and anti-base conformations along the double-stranded helix under physiological conditions. Z-DNA structure plays a role in transcriptional regulation, chromatin remodeling, and genome stability. To understand the biological function of Z-DNA and map the genome-wide Z-DNA-forming sites (ZFSs), a ChIP-Seq strategy is applied, which is a combination of chromatin immunoprecipitation (ChIP) and high-throughput DNA sequencing analysis.

View Article and Find Full Text PDF

Kaposi sarcoma (KS), a common HIV-associated malignancy, presents a range of clinicopathological features. Kaposi sarcoma-associated herpesvirus (KSHV) is its etiologic agent, but the contribution of viral genomic variation to KS development is poorly understood. To identify potentially influential viral polymorphisms, we characterized KSHV genetic variation in 67 tumors from 1-4 distinct sites from 29 adults with advanced KS in Kampala, Uganda.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!