Spontaneous chromosomal breakages frequently occur at genomic hot spots in the absence of DNA damage and can result in translocation-related human disease. Chromosomal breakpoints are often mapped near purine-pyrimidine Z-DNA-forming sequences in human tumors. However, it is not known whether Z-DNA plays a role in the generation of these chromosomal breakages. Here, we show that Z-DNA-forming sequences induce high levels of genetic instability in both bacterial and mammalian cells. In mammalian cells, the Z-DNA-forming sequences induce double-strand breaks nearby, resulting in large-scale deletions in 95% of the mutants. These Z-DNA-induced double-strand breaks in mammalian cells are not confined to a specific sequence but rather are dispersed over a 400-bp region, consistent with chromosomal breakpoints in human diseases. This observation is in contrast to the mutations generated in Escherichia coli that are predominantly small deletions within the repeats. We found that the frequency of small deletions is increased by replication in mammalian cell extracts. Surprisingly, the large-scale deletions generated in mammalian cells are, at least in part, replication-independent and are likely initiated by repair processing cleavages surrounding the Z-DNA-forming sequence. These results reveal that mammalian cells process Z-DNA-forming sequences in a strikingly different fashion from that used by bacteria. Our data suggest that Z-DNA-forming sequences may be causative factors for gene translocations found in leukemias and lymphomas and that certain cellular conditions such as active transcription may increase the risk of Z-DNA-related genetic instability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413824 | PMC |
http://dx.doi.org/10.1073/pnas.0511084103 | DOI Listing |
Nature
April 2024
Department of Immunology, Harvard Medical School, Boston, MA, USA.
AIRE is an unconventional transcription factor that enhances the expression of thousands of genes in medullary thymic epithelial cells and promotes clonal deletion or phenotypic diversion of self-reactive T cells. The biological logic of AIRE's target specificity remains largely unclear as, in contrast to many transcription factors, it does not bind to a particular DNA sequence motif. Here we implemented two orthogonal approaches to investigate AIRE's cis-regulatory mechanisms: construction of a convolutional neural network and leveraging natural genetic variation through analysis of F1 hybrid mice.
View Article and Find Full Text PDFSci Rep
February 2024
Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
Z-DNA, a well-known non-canonical form of DNA involved in gene regulation, is often found in gene promoters. Transposable elements (TEs), which make up 45% of the human genome, can move from one location to another within the genome. TEs play various biological roles in host organisms, and like Z-DNA, can influence transcriptional regulation near promoter regions.
View Article and Find Full Text PDFLife Sci Alliance
July 2023
Laboratory of Bioinformatics, Faculty of Computer Science, HSE University, Moscow, Russia
Identifying roles for Z-DNA remains challenging given their dynamic nature. Here, we perform genome-wide interrogation with the DNABERT transformer algorithm trained on experimentally identified Z-DNA forming sequences (Z-flipons). The algorithm yields large performance enhancements (F1 = 0.
View Article and Find Full Text PDFMethods Mol Biol
March 2023
Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
Different from the canonical right-handed B-DNA, a left-handed Z-DNA forms an alternating syn- and anti-base conformations along the double-stranded helix under physiological conditions. Z-DNA structure plays a role in transcriptional regulation, chromatin remodeling, and genome stability. To understand the biological function of Z-DNA and map the genome-wide Z-DNA-forming sites (ZFSs), a ChIP-Seq strategy is applied, which is a combination of chromatin immunoprecipitation (ChIP) and high-throughput DNA sequencing analysis.
View Article and Find Full Text PDFPLoS Pathog
November 2022
Department of Microbiology, University of Washington, Seattle, Washington, United States of America.
Kaposi sarcoma (KS), a common HIV-associated malignancy, presents a range of clinicopathological features. Kaposi sarcoma-associated herpesvirus (KSHV) is its etiologic agent, but the contribution of viral genomic variation to KS development is poorly understood. To identify potentially influential viral polymorphisms, we characterized KSHV genetic variation in 67 tumors from 1-4 distinct sites from 29 adults with advanced KS in Kampala, Uganda.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!