Temperate and boreal tree species respond to low positive temperatures (LT) or a shortening of the photoperiod (SD) by inducing cold acclimation. One of the metabolic consequences of cold acclimation is an increase in fatty acid (FA) desaturation in membrane lipids, which allows functional membrane fluidity to be maintained at LT. The molecular mechanisms of FA desaturation were investigated in leaves of birch seedlings (Betula pendula) during cold acclimation. Four genes involved in FA biosynthesis were isolated: a 3-ketoacyl-ACP synthase II gene (BpKASII) involved in the elongation of palmitoyl-ACP to stearoyl-ACP, and three omega-3 FA desaturase genes (BpFAD3, BpFAD7, and BpFAD8) involved in the desaturation of linoleic acid (18:2) to alpha-linolenic acid (18:3). BpFAD7 was the main omega-3 FAD gene expressed in birch leaves, and it was down-regulated by LT under SD conditions. LT induced the expression of BpFAD3 and BpFAD8 and a synchronous increase in 18:3 occurred in glycerolipids. Changes in the photoperiod did not affect the LT-induced increase in 18:3 in chloroplast lipids (MGDG, DGDG, PG), but it modulated the LT response detected in extra-chloroplastic lipids (PC, PE, PI, PS). A decrease in the proportion of the 16-carbon FAs in lipids occurred at LT, possibly in relation to the regulation of BpKASII expression at LT. These results suggest that LT affects the whole FA biosynthesis pathway. They support a co-ordinated action of microsomal (BpFAD3) and chloroplast enzymes (BpFAD7, BpFAD8) in determining the level of 18:3 in extra-chloroplastic membranes, and they highlight the importance of dynamic lipid trafficking.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erj075DOI Listing

Publication Analysis

Top Keywords

cold acclimation
16
fatty acid
12
3-ketoacyl-acp synthase
8
birch leaves
8
bpfad7 bpfad8
8
increase 183
8
acid
5
contribution omega-3
4
omega-3 fatty
4
acid desaturase
4

Similar Publications

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut.

View Article and Find Full Text PDF

Oxygen is toxic in the cold in .

Front Physiol

December 2024

Roth Lab, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

Introduction: Temperature and oxygen are two factors that profoundly affect survival limits of animals; too much or too little of either is lethal. However, humans and other animals can exhibit exceptional survival when oxygen and temperature are simultaneously low. This research investigates the role of oxygen in the cold shock death of Caenorhabditis elegans.

View Article and Find Full Text PDF

Proteomic Insights into the Regulatory Mechanisms of the Freezing Response in the Alpine Subnivale Plant .

Int J Mol Sci

December 2024

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.

Freezing temperatures impose significant constraints on plant growth and productivity. While cold tolerance mechanisms have been extensively studied in model species, the molecular basis of freezing tolerance in naturally adapted plants remains underexplored. , an alpine plant with a strong freezing tolerance, provides a valuable model for investigating these adaptive mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!