To maintain cellular homeostasis, the levels of transmembrane receptors found on the plasma membrane must be tightly regulated. Endocytosis of activated receptors and the eventual degradation of these transmembrane proteins in the lysosome serve a vital role in maintaining the plasma membrane receptor levels as well as attenuating the downstream signaling pathways. Two processes that regulate this receptor trafficking are the covalent modification of the receptor with ubiquitin (ubiquitylation) and the activation of the Rab5 family of small GTPases. Activation of Rab5 family proteins has been shown to be critical for early steps of the endocytic pathway including delivery of activated receptors to the early endosome, while ubiquitylation of activated receptors has been shown to be involved in receptor internalization, delivery to the endosome, and sorting into the multivesiclar body. In yeast, the guanine nucleotide exchange factor Vps9p serves to integrate the activation of a Rab5 protein (Vps21p) via the Vps9 domain with ubiquitin binding via the CUE domain to facilitate the delivery of ubiquitylated receptors to the endosome. Here we provide detailed protocols for the study of Vps9p in vivo and in vitro with regard to Vps21p activation, ubiquitin binding, and Vps9p ubiquitylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0076-6879(05)03049-1 | DOI Listing |
Cell Death Dis
November 2024
The State Key Laboratory for Complex, Severe, and Rare Diseases, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
The therapeutic options for Alzheimer's disease (AD) are limited, underscoring the critical need for finding an effective regulator of Aβ42 production. In this study, with 489 human postmortem brains, we revealed that homotrimer G protein subunit gamma 5 (GNG5) expression is upregulated in the hippocampal-entorhinal region of pathological AD compared with normal controls, and is positively correlated with Aβ pathology. In vivo and in vitro experiments confirm that increased GNG5 significantly promotes Aβ pathology and Aβ42 production.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2024
Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan.
After the endocytic and biosynthetic pathway converge, they partially share the route to the lysosome/vacuole. Similarly, the endocytic recycling and secretory pathways also partially share the route to the plasma membrane. The interaction of these transport pathways is mediated by endosomes and the -Golgi network (TGN), which act as sorting stations in endocytic and biosynthesis pathway, and endosomes has a bidirectional transport to and from the TGN.
View Article and Find Full Text PDFJ Virol
July 2024
Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
Unlabelled: The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear.
View Article and Find Full Text PDFAutophagy
October 2024
The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China.
Microglia are specialized macrophages responsible for the clearance of dead neurons and pathogens by phagocytosis and degradation. The degradation requires phagosome maturation and acidification provided by the vesicular- or vacuolar-type H-translocating adenosine triphosphatase (V-ATPase), which is composed of the cytoplasmic V domain and the membrane-embedded V domain. The V-ATPase a subunit, an integral part of the V domain, has four isoforms in mammals.
View Article and Find Full Text PDFMol Med
January 2024
Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China.
Background: Autophagic defects are involved in Methamphetamine (Meth)-induced neurotoxicity. Syntaxin 17 (Stx17), a member of the SNARE protein family, participating in several stages of autophagy, including autophagosome-late endosome/lysosome fusion. However, the role of Stx17 and potential mechanisms in autophagic defects induced by Meth remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!