The central nucleus of amygdala was examined to identify the ultrastructural distribution of neurotrophins responsible for the complex of neuronal signaling processes which regulate synaptic transmission and neuronal plasticity, and possibly underlie memory formation. We investigated at the electron microscopic level the cellular organization of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), in the extended amygdala (CE). We also investigated the interaction between cortical inputs to CE and BDNF and TrkB. Our results indicate the presence of pro-BDNF and BDNF in terminals in the CE which show a strong association with immunoreactive postsynaptic densities. TrkB receptor immunoreactivity was localized to postsynaptic densities of asymmetric synapses on dendrites and dendritic spines. Cortical terminals formed asymmetric synapses with dendritic shafts and spines, but were not BDNF immunoreactive. TrkB receptors were observed opposed to cortical terminals. These data also suggest that one potential substrate for associative learning may be the interaction of different cortical inputs with neurotrophin-containing terminals ending on dendritic spines and other neuronal structures of CE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2006.01.009 | DOI Listing |
Metab Brain Dis
January 2025
Section of Osteimmunology and Oral Immunology, Laboratory of Dental Reseach. FES Iztacala, National Autonomous University of Mexico (UNAM), México, Mexico State, México.
Unlabelled: LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D.
Material And Methods: 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control.
Brain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFBehav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.
View Article and Find Full Text PDFNanoscale
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!