Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Convection-enhanced delivery (CED) is a recently developed technique for local delivery of agents to a large volume of tissue in the central nervous system (CNS). We have previously reported that this technique can be applied to CNS delivery of nanoparticles including viruses and liposomes. In this paper, we describe the impact of key physical and chemical properties of infused molecules on the extent of CED-mediated delivery. For simple infusates, CED distribution was significantly increased if the infusate was more hydrophilic or had less tissue affinity. Encapsulation of tissue-affinitive molecules by neutral liposomes significantly increased their tissue distribution. The poorer brain distribution observed with cationic liposomes, due to their greater tissue affinity, was completely overcome by PEGylation, which provides steric stabilization and reduced surface charge. Finally, liposomal encapsulation of doxorubicin reduced its tissue affinity and substantially increased its distribution within brain tumor tissue. Taken together, the physical and chemical properties of drugs, small molecules and macromolecular carriers determine the tissue affinity of the infusate and strongly affect the distribution of locally applied agents. Thus, an increased and more predictable tissue distribution can be achieved by reducing the tissue affinity of the infusate using appropriately engineered liposomes or other nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2005.12.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!