RhoE belongs to the Rnd subfamily of small Rho-related GTP-binding proteins. Similar to other Rho proteins, RhoE regulates actin cytoskeleton dynamics. Expression of RhoE induces loss of actin stress fibers, and it also increases cell migration speed. In part, this is due to RhoE interaction with the RhoA effector ROCK I, a serine/threonine kinase that regulates the formation and contractility of stress fibers. Interestingly, RhoE does not interact with the highly homologous kinase ROCK II. RhoE binding inhibits ROCK I from phosphorylating its downstream target myosin light chain phosphatase, thus increasing the activity of the phosphatase to dephosphorylate myosin II, which results in reduced actomyosin contractility. RhoE itself is phosphorylated by ROCK I, and this may enhance RhoE regulation of ROCK I function. This chapter describes the method used for studying ROCK inhibition by RhoE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0076-6879(06)06041-1 | DOI Listing |
Phys Med
January 2025
Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia.
Purpose: To propose comprehensive characterization methods of additive manufacturing (AM) materials for MV photon and MeV electron radiotherapy.
Methodology: This study investigated 15 AM materials using CT machines. Geometrical accuracy, tissue-equivalence, uniformity, and fabrication parameters were considered.
Phys Med Biol
December 2024
Département de physique, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.
Contrast agents in computed tomography (CT) scans can compromise the accuracy of dose calculations in radiation therapy planning, especially for particle therapy. This often requires an additional non-contrast CT scan, increasing radiation exposure and introducing potential registration errors. Our goal is to resolve these issues by accurately estimating radiotherapy parameters from dual virtual non-contrast (dual-VNC) images generated by contrast-enhanced dual-energy CT (DECT) scans, while accounting for noise and variability in tissue composition.
View Article and Find Full Text PDFInt J Mol Med
May 2024
Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia‑reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
May 2024
Texas A&M Health, Department of Medical Physiology (C.A.A., S.R., S.C., K.J.B.), Texas A&M School of Medicine, Bryan.
Background: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported.
Methods: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells.
Phys Med Biol
February 2024
Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.
Computed tomography (CT) has advanced since its inception, with breakthroughs such as dual-energy CT (DECT), which extracts additional information by acquiring two sets of data at different energies. As high-flux photon-counting detectors (PCDs) become available, PCD-CT is also becoming a reality. PCD-CT can acquire multi-energy data sets in a single scan by spectrally binning the incident x-ray beam.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!