Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The stratum corneum (SC) represents a significant barrier to the delivery of gene therapy formulations. In order to realise the potential of therapeutic cutaneous gene transfer, delivery strategies are required to overcome this exclusion effect. This study investigates the ability of microfabricated silicon microneedle arrays to create micron-sized channels through the SC of ex vivo human skin and the resulting ability of the conduits to facilitate localised delivery of charged macromolecules and plasmid DNA (pDNA). Microscopic studies of microneedle-treated human epidermal membrane revealed the presence of microconduits (10-20 microm diameter). The delivery of a macromolecule, beta-galactosidase, and of a 'non-viral gene vector mimicking' charged fluorescent nanoparticle to the viable epidermis of microneedle-treated tissue was demonstrated using light and fluorescent microscopy. Track etched permeation profiles, generated using 'Franz-type' diffusion cell methodology and a model synthetic membrane showed that >50% of a colloidal particle suspension permeated through membrane pores in approximately 2 hours. On the basis of these results, it is probable that microneedle treatment of the skin surface would facilitate the cutaneous delivery of lipid:polycation:pDNA (LPD) gene vectors, and other related vectors, to the viable epidermis. Preliminary gene expression studies confirmed that naked pDNA can be expressed in excised human skin following microneedle disruption of the SC barrier. The presence of a limited number of microchannels, positive for gene expression, indicates that further studies to optimise the microneedle device morphology, its method of application and the pDNA formulation are warranted to facilitate more reproducible cutaneous gene delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156720106775197510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!