A series of organometallic compounds of group 13 metals supported by the sterically encumbered beta-diketiminate ligand containing hydrides, fluorides, chlorides, and bromide have been synthesized and structurally characterized. The synthetic strategy applied utilizes halide metathesis and reduction of metal chlorides to the corresponding hydrides. Thus, the reaction of LLi.OEt2 with MeMCl2 affords LM(Me)Cl (M = Al (1), Ga (2), In (3)) and LGaBr2 (4) with GaBr3. Reduction of LGa(Me)Cl with LiH.BEt3 leads to the formation of LGa(Me)H (10). Synthesis of LGaH(2) (12) has been accomplished by reacting LGaI2 (8) with LiH.BEt3. LAl(Me)Cl (1) and LAlH2 (6) have been converted to LAl(Me)F (5) and LAlF2 (7), respectively. The former was obtained in a reaction of LAl(Me)Cl with Me3SnF while the latter was isolated in a reaction of LAlH2 with BF3.OEt2. Similarly reaction of LGaI2 (8) with Me3SnF affords LGaF2 (9). Compounds reported herein have been characterized by elemental analyses, IR, NMR, EI-MS, and single-crystal X-ray diffraction techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0517826 | DOI Listing |
ACS Appl Polym Mater
December 2024
School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, BT9 5AG Belfast, Northern Ireland, U.K.
Phosphorus (P) fertilizer is an essential component of our food system with the majority of all mined P rock processed to make mineral fertilizers. Globally however P rock stocks are declining-both in quality and quantity-with poor P management creating a linear economic system where P is mined, globally redistributed into products and eventually discharged into the environment leading to eutrophication. To enable establishment of a circular P economy, whereby P can be recovered from waste for its industrial reuse, requires the development of effective P recovery technologies.
View Article and Find Full Text PDFCureus
December 2024
Department of Internal Medicine, Taibah University, Al-Madinah, SAU.
Celiac disease (CD) is a long-term inflammatory condition affecting the small intestines, characterized by bowel villi atrophy and mucosal histological alterations that lead to impaired nutrient absorption and metabolic changes. While a gluten-free diet (GFD) is recognized as one of the most effective treatments, it presents significant challenges including increased expenses, potential nutritional deficiencies, and various social and psychological implications. This review evaluates the comprehensive impact of GFD on CD patients, examining its efficacy in preventing complications like osteoporosis and alleviating symptoms, while also addressing the difficulties in maintaining complete gluten elimination.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.
This study aimed to prepare carbon dots (GF-CDs) and examine their efficacy in mitigating oxidative stress and apoptosis in intestinal porcine epithelial cells from the jejunum (IPEC-J2 cells) induced by lipopolysaccharide (LPS). The GF-CDs were synthesized using a one-step hydrothermal method. The oxidative damage model of IPEC-J2 cells was induced through LPS treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States.
Rechargeable Li-CO batteries face challenges of sluggish reaction kinetics and poor rechargeability. Highly efficient electrocatalysts are urgently needed to decompose the discharge product, LiCO. Mn-based transition metal oxides are regarded as promising candidates for improving the cycle performance and reaction kinetics of Li-CO batteries.
View Article and Find Full Text PDFNeurospine
December 2024
Department of Orthopedics, Tianjin hospital Tianjin University, Tianjin, China.
Objective: Spinal Cord Injury (SCI) leads to severe motor and sensory deficits, with limited treatment options. This study investigates how methylprednisolone-loaded nanoparticles (MP-NPs) modulate SCI repair by targeting Solute Carrier Family 16 Member 3 (SLC16A3) and reshaping the macrophage-inflammatory microenvironment.
Methods: Transcriptome data were analyzed to identify differentially expressed genes (DEGs) associated with SCI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!