Reactions of the bis(bidentate) Schiff-bases N,N'-bis(6-alkyl-2-pyridylmethylene)ethane-1,2-diamine (where alkyl = H, Me, iPr) (L) with tetrakis(acetonitrile)copper(I) hexafluorophosphate and silver(I) hexafluorophosphate afforded, respectively, the double-stranded, dinuclear metal helicates [T-4-(R,R)]-(+/-)-[M2L2](PF6)2 (M = Cu, Ag). The helicates were characterized by 1H and 13C NMR spectroscopy, conductivity, microanalysis, and single-crystal X-ray structure determinations on selected compounds. Intermolecular ligand exchange and intramolecular inversion rates for the complexes were investigated by 1H NMR spectroscopy. Reversible intermolecular ligand exchange between two differently substituted helicates followed first-order kinetics. The rate constants (k) and corresponding half-lives (t(1/2)) for ligand exchange for the dicopper(I) helicates were k = (1.6-1.8) x 10(-6) s(-1) (t(1/2) = 110-120 h) in acetone-d6, k = 4.9 x 10(-6) s(-1) (t(1/2) = 40 h) in dichloromethane-d2, and k > 2 x 10(-3) s(-1) (t(1/2) < 5 min) in acetonitrile-d3. Ligand exchange for the disilver(I) helicates occurred with k > 2 x 10(-3) s(-1) (t(1/2) < 5 min). Racemization of the dicopper(I) helicate by an intramolecular mechanism was investigated by determination of the coalescence temperature for the diastereotopic isopropyl-Me groups in the appropriate complex, and DeltaG() >> 76 kJ mol(-1) was calculated for the process in acetone-d6, nitromethane-d3, and dichloromethane-d2 with DeltaG() = 75 kJ mol(-1) in acetonitrile-d3. Complete anion exchange of the hexafluorophosphate salt of a dicopper(I) helicate with the enantiomerically pure Delta-(-)-tris(catecholato)arsenate(V) ([As(cat)3]-) in the presence of Dabco gave the two diastereomers (R,R)-[Cu2L2][Delta-(-)-[As(cat)3]]2 and (S,S)-[Cu2L2][Delta-(-)-[As(cat)3]]2 in up to 54% diastereomeric excess, as determined by (1)H NMR spectroscopy. The diastereomerically and enantiomerically pure salt (R,R)-[Cu(2)L2][Delta-(-)-[As(cat)3]]2 crystallized from the solution in a typical second-order asymmetric transformation. The asymmetric transformation of the dicopper(I) helicate is the first synthesis of a diastereomerically and enantiomerically pure dicopper(I) helicate containing achiral ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic051478cDOI Listing

Publication Analysis

Top Keywords

dicopperi helicate
20
ligand exchange
16
s-1 t1/2
16
asymmetric transformation
12
nmr spectroscopy
12
enantiomerically pure
12
helicate achiral
8
intermolecular ligand
8
10-6 s-1
8
10-3 s-1
8

Similar Publications

Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuL pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around Cu templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process.

View Article and Find Full Text PDF

The bis-bidentate ligand, obtained from Schiff base condensation of RR-1,2-cyclohexanediamine and 8-naphthylmethoxyquinoline-2-carbaldehyde (L-L), forms with [Cu(I)(MeCN)4]ClO4 a double strand helicate complex, made especially stable by the presence of four definite interstrand π-π interactions involving a quinoline subunit and a naphthylmethoxy substituent of the two strands. The [Cu(I)2(L-L)2](2+) complex, which does not decompose even on excess addition of either L-L or Cu(I), undergoes a two electron oxidation in MeCN, through two one-electron fully reversible steps, separated by 260 mV, as shown by cyclic voltammetry (CV) studies. The high stability of the mixed valence complex [Cu(I)Cu(II)(L-L)2](3+) with respect to disproportionation to [Cu(I)2(L-L)2](2+) and [Cu(II)2(L-L)2](4+) is essentially due to a favorable electrostatic term.

View Article and Find Full Text PDF

Reaction of a pinene-based pyridylthioamide with 1,4-dibromo-2,3-butanedione in refluxing methanol yielded a new chiral pyridylthiazole ligand L which forms a dinuclear double-stranded helicate with Cu(i) ions; this helicate has opposite helical chirality when compared with its quaterpyridine analogue.

View Article and Find Full Text PDF

Helicate extension as a route to molecular wires.

Chemistry

October 2008

Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, Switzerland.

We describe the preparation of a helicate containing four closely spaced, linearly arrayed copper(I) ions. This product may be prepared either directly by mixing copper(I) with a set of precursor amine and aldehyde subcomponents, or indirectly through the dimerization of a dicopper(I) helicate upon addition of 1,2-phenylenediamine. A notable feature of this helicate is that its length is not limited by the lengths of its precursor subcomponents: each of the two ligands wrapped around the four copper(I) centers contains one diamine, two dialdehyde, and two monoamine residues.

View Article and Find Full Text PDF

A dicopper(I) double helicate oxidizes and rapidly reorganises to form a stable pentadentate dicopper(II) double helicate due to the proximity of pendant pyridyl rings as studied by electrochemical and structural analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!