Aggregation of antifreeze glycoprotein fraction 8 and its effect on antifreeze activity.

Biomacromolecules

Department of Chemistry, 10 Marie Curie, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.

Published: February 2006

Antifreeze glycoproteins (AFGPs) have many potential applications ranging from the cryopreservation and hypothermic storage of tissues and organs to the preservation of various frozen food products. Since supplying native AFGP for these applications is a labor-intensive and costly process, the rational design and synthesis of functional AFGP analogues is a very attractive alternative. While structure-function studies have implicated specific structural motifs as essential for antifreeze activity in AFGP, the relationship between solution conformation and antifreeze activity is poorly understood. Toward this end, we have analyzed AFGP8 in aqueous solutions using dynamic light scattering (DLS) and circular dichroism (CD). Our results indicate that AFGP8 forms discrete aggregates in solution. These aggregates are predominantly composed of dimers that form at solution concentrations greater than 20 mM. CD spectroscopy indicates that the preferred solution conformation of AFGP8 is consistent with that of random coil. However, significant beta-sheet and alpha-helix character is observed in more concentrated solutions, indicating that these glycopeptides are highly flexible in solution. Aggregation appears to have a minimal effect on the overall solution conformation. Thermal hysteresis (TH) activity of the aggregated solutions is much higher than that of less concentrated solutions that do not form aggregates. While cooperative functioning between lower and higher molecular weight AFGPs has been reported, this is the first instance where cooperative functioning in lower molecular weight AFGPs has been observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm050605tDOI Listing

Publication Analysis

Top Keywords

antifreeze activity
12
solution conformation
12
concentrated solutions
8
cooperative functioning
8
functioning lower
8
molecular weight
8
weight afgps
8
solution
6
aggregation antifreeze
4
antifreeze glycoprotein
4

Similar Publications

pH-Regulated catechol-modified sodium alginate hydrogel with anti-freezing and high toughness for wearable strain sensor.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China. Electronic address:

Hydrogel-based flexible electronic devices have garnered significant attention due to their excellent mechanical properties, high electrical conductivity, and signal sensitivity. Nevertheless, internal water molecules crystallize inevitably at low temperatures, impairing the performance of hydrogels. Designing anti-freezing and tough hydrogels to meet long-term stability requirements is extremely challenging.

View Article and Find Full Text PDF

Ethylene glycol (C₂H₆O₂), a toxic alcohol commonly found in automotive antifreeze, de-icing solutions, and industrial coolants, can cause severe toxicity when ingested. Due to its sweet taste, it is often consumed accidentally or intentionally, leading to life-threatening consequences such as metabolic acidosis, acute kidney injury (AKI), and mortality. Prompt diagnosis and early treatment with antidotes such as fomepizole or ethanol, combined with hemodialysis, are essential in preventing severe outcomes.

View Article and Find Full Text PDF

The antifreeze mechanism of antifreeze glycoproteins (AFGPs) remains incompletely understood, which limits the design of new antifreeze molecules for practical applications. For instance, the ice growth inhibition of AFGP8 (the shortest AFGPs) is primarily driven by hydrophobic methyl and hydrogen-bonding hydroxyl groups. However, altering the C3-β linkage in the disaccharide moiety of AFGP8, denoted as variant GP8-LacNAc, significantly reduces its antifreeze activity.

View Article and Find Full Text PDF

Peptidomics & Molecular Simulation-Based Specific Screening of Antifreeze Peptides from Scale and the Action Mechanism.

J Agric Food Chem

January 2025

College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China.

This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.

View Article and Find Full Text PDF

Glycosylated peptides isolated from cheese whey have antifreezing activity.

Food Chem

December 2024

Department of Food Science, The University of Tennessee, Knoxville (UTK), TN 37996, United States. Electronic address:

The glycomacropeptide (GMP) present in the cheese whey byproduct can be an excellent antifreezing agent due to its unique molecular structure. The objective of this study was to concentrate this peptide and investigate its ice recrystallization inhibition (IRI) ability. Heat denaturation of the non-GMP proteins and preparative liquid chromatography were used to create fraction 1 (F1) and fraction 2 (F2) and these were tested using the splat assay and a modified sucrose sandwich assay to investigate their IRI activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!