We report here for the first time on surface immobilization of hollow faceted polyhedrons formed from catanionic surfactant mixtures. We find that electrostatic interaction with the substrate dominates their adhesion behavior. Using polyelectrolyte coated surfaces with tailored charge densities, polyhedrons can thus be immobilized without complete spreading, which allows for further study of their mechanical properties using AFM force measurements. The elastic response of individual polyhedrons can be locally resolved, showing pronounced differences in stiffness between faces and vertexes of the structure, which makes these systems interesting as models for structurally similar colloidal scale objects such as viruses, where such effects are predicted but cannot be directly observed due to the smaller dimensions. Elastic constants of the wall material are estimated using shell and plate deformation models and are found to be a factor of 5 larger than those for neutral lipidic bilayers in the gel state. We discuss the molecular origins of this high stiffness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp054473+ | DOI Listing |
Chem Sci
January 2025
BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.
View Article and Find Full Text PDFHerein, a novel magnetic resorcinol-formaldehyde-supported isatin-Schiff-base/Fe complex (FeO@RF-ISB/Fe) is prepared and characterized and its catalytic performance is investigated in the synthesis of pyrano[2,3-]pyrimidines. The FeO@RF-ISB nanomaterial was prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over the FeO@RF composite, followed by treatment with isatin. The FeO@RF-ISB was then reacted with FeCl·6HO to afford the FeO@RF-ISB/Fe nanocatalyst.
View Article and Find Full Text PDFTalanta
January 2025
School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. Electronic address:
Hepatocellular carcinoma (HCC) stands as a grave illness characterized by elevated death rates. Early identification plays a vital role in improving patient survival. Herein, a novel split-type dual-mode biosensor featuring with near-infrared photoelectronchemical (PEC) and colorimetric sensing characteristics was developed for the high-performance detection of HepG2 cells.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:
Soil mineral properties significantly influence the mobility of Cd(II) within the soil matrix. However, the limited understanding of how microbial metabolism affects mineral structure at the microscale poses challenges for in situ remediation. Here, we designed a model calcium-phosphate system in a urea-rich environment to explore the impact of different microbial activation levels on Cd(II) fixation at mineral interfaces.
View Article and Find Full Text PDFLangmuir
January 2025
CHRIST University, Bangalore, Karnataka 560029, India.
Given the inherent challenges of the CO electroreduction (COER) reaction, solely from CO and HO, it is desirable to develop selective product formation pathways. This can be achieved by designing multimetallic nanocomposites that provide optimal CO coverage, allowing for tunability in the product formation. In this work, Ag and Zn codoped-SrTiO (ZAST) composite immobilized carbon black (CB)-modified GCE working electrode (ZAST@CB/GCE) was developed for the electrochemical conversion of CO to multicarbon products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!