The oxygen K edge X-ray absorption spectra of aqueous HCl and NaCl solutions reveal distinct perturbations of the local water molecules by the respective solutes. While the addition of NaCl leads to large spectral changes, the effect of HCl on the observed X-ray absorption spectrum is surprisingly small. Density functional theory calculations suggest that this difference primarily reflects a strong blue shift of the hydrated proton (in either the Eigen (H9O4+) or Zundel (H2O5+) forms) spectrum relative to that of H2O, indicating the tighter binding of electrons in H3O+. This spectral shift counteracts the spectral changes that arise from direct electrostatic perturbation of water molecules in the first solvation shell of Cl-. Consequently, the observed spectral changes effected by HCl addition are minimal compared to those engendered by NaCl. Additionally, these results indicate that the effect of monovalent cations on the nature of the unoccupied orbitals of water molecules in the first solvation shell is negligible, in contrast to the large effects of monovalent anions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0534582DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
12
water molecules
12
spectral changes
12
hydrated proton
8
aqueous hcl
8
hcl nacl
8
nacl solutions
8
molecules solvation
8
solvation shell
8
electronic structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!