The energy relaxation of the electrons in the conduction band of 12 and 30 nm diameter copper nanoparticles in colloidal solution was investigated using femtosecond time-resolved transient spectroscopy. Experimental results show that the hot electron energy relaxation is faster in 12 nm copper nanoparticles (0.37 ps) than that in 30 nm copper nanoparticles (0.51 ps), which is explained by the size-dependent electron-surface phonon coupling. Additional mechanisms involving trapping or energy transfer processes to the denser surface states (imperfection) in the smaller nanoparticles are needed to explain the relaxation rate in the 12 nm nanoparticles. The observed fluorescence quantum yield from these nanoparticles is found to be enhanced by roughly 5 orders of magnitude for the 30 nm nanoparticles and 4 orders of magnitude for the 12 nm nanoparticles (relative to bulk copper metal). The increase in the fluorescence quantum yield is attributed to the electromagnetic enhancement of the radiative recombination of the electrons in the s-p conduction band below the Fermi level with the holes in the d bands due to the strong surface plasmon oscillation in these nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0545445 | DOI Listing |
Sci Rep
January 2025
Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr city, Cairo, Egypt.
Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China. Electronic address:
A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India.
This study involves a novel CuO/CoFe₂O₄/MWCNTs (CCT) nanocomposite, developed by integrating cobalt ferrite (CoFe₂O₄) and copper oxide (CuO) nanoparticles onto multi-walled carbon nanotubes (MWCNTs), for the degradation of tetracycline (TC) under visible light. The photocatalyst was extensively characterized using XRD, HR-SEM, EDX, HR-TEM, UV-Vis, BET, and PL analysis. The synthesized CoFe₂O₄ and CuO nanoparticles exhibited crystallite sizes of 46.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Indian Institute of Science, Bangalore, India.
Electrical resistivity in good metals, particularly noble metals such as gold (Au), silver (Ag), or copper, increases linearly with temperature (T) for T > Θ, where Θ is the Debye temperature. This is because the coupling (λ) between the electrons and the lattice vibrations, or phonons, in these metals is weak, with λ ~ 0.1-0.
View Article and Find Full Text PDFMol Biol Res Commun
January 2025
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan.
is a gram-negative bacterium that causes a diversity of diseases in numerous plants. Strategies to inhibit growth include protective procedures; however, controlling the disease is complicated due to its rapid spread. Several antimicrobial agents can prevent this disease, such as chemical compounds, biological agents, secondary metabolites, nanoparticles, bacteriophages, and antimicrobial peptides (AMPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!