This paper focused on a self-developed microfluidic array system with microfabricated capillary array electrophoresis (mu-CAE) chip for parallel chip electrophoresis of biomolecules. The microfluidic array layout consists of two common reservoirs coupled to four separation channels connected to sample injection channel on the soda-lime glass substrate. The excitation scheme for distributing a 20 mW laser beam to separation channels in an array is achieved. Under the control of program, the sample injection and separation in multichannel can be achieved through six high-voltage modules' output. A CCD camera was used to monitor electrophoretic separations simultaneously in four channels with LIF detection, and the electropherograms can be plotted directly without reconstruction by additional software. Parallel multichannel electrophoresis of series biomolecules including amino acids, proteins, and nucleic acids was performed on this system and the results showed fine reproducibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200500689 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, 98195, USA.
Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada.
Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic-electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for sensing glucose. The study shows that both a low polymer concentration in the mixture for printing the microfluidic channels and surface modification of the printed microfluidic channels using 3-aminopropyltrimethoxysilane can substantially boost the device's performance.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China.
Background: Hydrogel microspheres with monodisperse and homogeneous dimensions have potential application in the field of three-dimensional (3D) cell culture due to its ability to provide a similar microenvironment. Currently, alginate hydrogel microspheres (AHMs) have received much attention due to the favorable properties of alginate such as biocompatibility, inexpensiveness, nontoxicity, and biodegradability. The fabrication methods of AHMs mainly include extrusion, electrostatic dripping and microfluidic chip techniques.
View Article and Find Full Text PDFMater Horiz
December 2024
North Carolina State University, Department of Materials Science & Engineering, Raleigh, NC 27695, USA.
Pharm Res
December 2024
Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
Objective: Microfluidics has emerged as a promising technique to prepare nanoparticles. However, the current microfluidic devices are mainly chip-based and are often integrated into expensive systems that lack on-the-spot versatility. The aim of this study was to set up a modular microfluidic system based on low-cost capillaries and reusable, easy-to-clean building blocks that can prepare poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with and without incorporated water-soluble biomacromolecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!