Gene expression profiling of bovine in vitro adipogenesis using a cDNA microarray.

Funct Integr Genomics

The Cooperative Research Center for Cattle and Beef Quality, CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Qld 4067, Australia.

Published: July 2006

The gene expression profile of bovine bone marrow stromal cells undergoing adipogenesis was established using a custom cDNA microarray. Cells that were treated with adipogenic stimulants and those that were not were collected at each of the six time points, and gene expression differences between the treated and untreated samples within each time point were compared using a microarray. Statistical analyses revealed that 158 genes showed a minimum fold change of 2 in at least one of the five post-differentiation time points. These genes are involved in various cellular pathways and functions, including lipogenesis, glycolysis, cytoskeleton remodelling, extracellular matrix, transcription as well as various signalling pathways such as insulin, calcium and wingless signalling. The experiment also identified 17 differentially expressed (DE) microarray elements with no assigned function. Quantitative real-time PCR was employed to validate eight DE genes, and the PCR data were found to reproduce the microarray data for these eight genes. Subsequent gene ontology annotation was able to provide a global overview of the molecular function of DE genes during adipogenesis. This analysis was able to indicate the importance of different gene categories at various stages of adipogenic conversion, thereby providing further insights into the molecular changes during bovine adipogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-005-0016-xDOI Listing

Publication Analysis

Top Keywords

gene expression
12
cdna microarray
8
time points
8
gene
5
microarray
5
genes
5
expression profiling
4
profiling bovine
4
bovine vitro
4
adipogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!