Multistep intermolecular energy migration between elongated fluorophores (carbocyanines) in uniaxially oriented polymer films is studied based on fluorescence depolarization and Monte-Carlo simulations. Contrary to disordered systems it is found experimentally that the concentration depolarization of fluorescence in uniaxially oriented films is extremely weak despite effective energy migration. Based on the concentration depolarization experiment in the ordered matrix it is possible to estimate the angle between absorption and fluorescence transition moments of carbocyanines. The values of that angle are very close to those obtained from other methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-005-0038-8 | DOI Listing |
J Am Chem Soc
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Li-rich cation-disordered rocksalt (DRX) materials introduce new paradigms in the design of high-capacity Li-ion battery cathode materials. However, DRX materials show strikingly sluggish kinetics due to random Li percolation with poor rate performance. Here, we demonstrate that Li stuffing into the tetrahedral sites of the Mn-based rocksalt skeleton injects a novel tetrahedron-octahedron-tetrahedron diffusion path, which acts as a low-energy-barrier hub to facilitate high-speed Li transport.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFUrologie
January 2025
Klinik und Poliklinik für Urologie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland.
The superiority of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) over conventional staging methods such as computed tomography (CT) and bone scintigraphy has now been demonstrated for almost all clinical stages of prostate cancer. In primary diagnostics, PSMA-PET/CT is therefore the new standard for risk-adapted whole-body staging. At the same time, PSMA-PET/CT provides a new risk-based classification for predicting overall survival across all early and late stages of the disease.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!