Physiological role of ROCKs in the cardiovascular system.

Am J Physiol Cell Physiol

Brigham and Women's Hospital, 65 Landsdowne St., Rm. 275, Cambridge, MA, USA.

Published: March 2006

AI Article Synopsis

  • Rho-associated kinases (ROCKs) are key protein kinases involved in various cellular functions and are linked to cardiovascular diseases like vasospastic angina and heart failure.
  • Inhibition of ROCKs, often through statins, can enhance protective mechanisms in blood vessels, leading to reduced inflammation and improved heart health.
  • Recent advancements in understanding ROCK isoforms and knockout models are paving the way for deeper insights into their specific roles in cardiovascular conditions.

Article Abstract

Rho-associated kinases (ROCKs), the immediate downstream targets of RhoA, are ubiquitously expressed serine-threonine protein kinases that are involved in diverse cellular functions, including smooth muscle contraction, actin cytoskeleton organization, cell adhesion and motility, and gene expression. Recent studies have shown that ROCKs may play a pivotal role in cardiovascular diseases such as vasospastic angina, ischemic stroke, and heart failure. Indeed, inhibition of ROCKs by statins or other selective inhibitors leads to the upregulation and activation of endothelial nitric oxide synthase (eNOS) and reduction of vascular inflammation and atherosclerosis. Thus inhibition of ROCKs may contribute to some of the cholesterol-independent beneficial effects of statin therapy. Currently, two ROCK isoforms have been identified, ROCK1 and ROCK2. Because ROCK inhibitors are nonselective with respect to ROCK1 and ROCK2 and also, in some cases, may be nonspecific with respect to other ROCK-related kinases such as myristolated alanine-rich C kinase substrate (MARCKS), protein kinase A, and protein kinase C, the precise role of ROCKs in cardiovascular disease remains unknown. However, with the recent development of ROCK1- and ROCK2-knockout mice, further dissection of ROCK signaling pathways is now possible. Herein we review what is known about the physiological role of ROCKs in the cardiovascular system and speculate about how inhibition of ROCKs could provide cardiovascular benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692274PMC
http://dx.doi.org/10.1152/ajpcell.00459.2005DOI Listing

Publication Analysis

Top Keywords

role rocks
12
rocks cardiovascular
12
inhibition rocks
12
physiological role
8
rocks
8
cardiovascular system
8
rock1 rock2
8
protein kinase
8
cardiovascular
5
system rho-associated
4

Similar Publications

Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).

View Article and Find Full Text PDF

The shear failure of rock masses is one of the primary causes of underground engineering instability. The shear mechanical behavior of rocks at different sizes is of great significance for studying the shear failure pattern of engineering rock masses. However, due to the presence of various joints and defects in natural rocks, the obtained rock specimens exhibit significant discreteness, making it difficult to customize specimen sizes for size effect studies.

View Article and Find Full Text PDF

For large, open-air lithic cultural heritage, colonization is an inevitable process. This study examines the dual impact of colonization on the Leshan Giant Buddha's sandstone monuments, focusing on both biodeterioration and protection. Over three years, we conducted field surveys and monitored biocrusts (bryophytes, lichens, and biofilms) on these monuments, observing significant biodeterioration primarily due to mechanical exfoliation and acid corrosion.

View Article and Find Full Text PDF
Article Synopsis
  • Karst caves are unique ecosystems with low organic matter and high endemic biodiversity, particularly in microbes like testate amoebae (Arcellinida).
  • Recent research in Dinaric karstic caves, using metabarcoding techniques, reveals that bat guano significantly enhances the diversity and abundance of Arcellinida communities.
  • Findings suggest that bat guano creates rich habitats for unique Arcellinida species, emphasizing the important ecological role of bats in these subterranean environments.
View Article and Find Full Text PDF

For a long time, the management of surface structures such as villages and rivers affected by underground coal mining has been a popular and difficult issue in coal mining. With the further tightening of environmental protection requirements, it has become challenging for some underground coal mines that lack the conditions for filling and grouting to ensure the recovery of coal resources while controlling surface subsidence. Furthermore, many such common issues have emerged in the Yushen and Binchang mining areas of Shanxi Province, as well as in several other coalfields, severely constraining the development of coal energy and ecological environmental protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!