Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions.

Am J Physiol Regul Integr Comp Physiol

Center for Research in Neuroscience, McGill University, Montreal General Hospital, Montreal, Quebec, Canada.

Published: July 2006

Recent advances in neuronal culturing techniques have supplied a new set of tools for studying neural tissue, providing effective means to study molecular aspects of regulatory elements in the supraoptic nucleus of the hypothalamus (SON). To combine molecular biology techniques with electrophysiological recording, we modified an organotypic culture protocol to permit transfection and whole cell patch-clamp recordings from SON cells. Neonatal mouse brain coronal sections containing the SON were dissected out, placed on a filter insert in culture medium, and incubated for at least 4 days to allow attachment to the insert. The SON was identifiable using gross anatomical landmarks, which remained intact throughout the culturing period. Immunohistochemical staining identified both vasopressinergic and oxytocinergic cells present in the cultures, typically appearing in well-defined clusters. Whole cell recordings from these cultures demonstrated that certain properties of the neonatal mouse SON were comparable to adult mouse magnocellular neurons. SON neurons in both neonatal cultures and acute adult slices showed similar sustained outward rectification above -60 mV and action potential broadening during evoked activity. Membrane potential, input resistance, and rapidly inactivating potassium current density (IA) were reduced in the cultures, whereas whole cell capacitance and spontaneous synaptic excitation were increased, perhaps reflecting developmental changes in cell physiology that warrant further study. The use of the outlined organotypic culturing procedures will allow the study of such electrophysiological properties of mouse SON using whole cell patch-clamp, in addition to various molecular, techniques that require longer incubation times.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00830.2005DOI Listing

Publication Analysis

Top Keywords

supraoptic nucleus
8
cell patch-clamp
8
neonatal mouse
8
mouse son
8
son
7
cell
6
mouse
5
visually guided
4
guided cell
4
cell patch
4

Similar Publications

3,4-Methylenedioxymethamphetamine (MDMA) is a widely recognized entactogen frequently used recreationally. It is known for its interaction with the serotonin and oxytocin systems, which underlie its entactogenic effects in humans. Recently, we demonstrated that the gut-brain axis, mediated by the subdiaphragmatic vagus nerve, contributes to MDMA-induced resilience enhancement in rodents.

View Article and Find Full Text PDF

Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin.

View Article and Find Full Text PDF

Exercise performance effect of central dopamine is mediated by hypothalamic neuronal activation.

Behav Brain Res

March 2025

Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Acting centrally, dopamine has been shown to induce ergogenic effects derived from its influence on thermoregulation, motivation, reward, and motor control. Thus, to evaluate the role of the central dopaminergic system in hypothalamic neuronal activation and its relationship with exercise performance, Wistar rats were intracerebroventricularly injected with saline (SAL) or SCH-23390 (SCH, dopamine D1 receptor blocker) at rest and before timed submaximal exercise (∼13 min) or exercise until fatigue. Core body and tail temperatures were recorded throughout the exercise.

View Article and Find Full Text PDF

The neural ensembles activated by propofol and isoflurane anesthesia across the whole mouse brain.

Neurosci Lett

January 2025

Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong 510515, China. Electronic address:

General anesthesia has been widely used in surgical procedures. Propofol and isoflurane are the most commonly used injectable and inhaled anesthetics, respectively. The various adverse effects induced by propofol and isoflurane are highly associated with the anesthetic-dependent change of brain activities.

View Article and Find Full Text PDF

Oxytocin neurons in the paraventricular and supraoptic hypothalamic nuclei bidirectionally modulate food intake.

bioRxiv

November 2024

Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, USA.

Oxytocin (OT) is a neuropeptide produced in the paraventricular (PVH) and supraoptic (SON) nuclei of the hypothalamus. Either peripheral or central administration of OT suppresses food intake through reductions in meal size. However, pharmacological approaches do not differentiate whether observed effects are mediated by OT neurons located in the PVH or in the SON.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!