Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite its critical role in restoring cardiac rhythm and thus in saving human life, cardiac defibrillation remains poorly understood. Further mechanistic inquiry is hampered by the inability of presently available experimental techniques to resolve, with sufficient accuracy, electrical behaviour confined to the depth of the ventricles. The objective of this review article is to demonstrate that realistic 3-D simulations of the ventricular defibrillation process in close conjunction with experimental observations are capable of bringing a new level of understanding of the electrical events that ensue from the interaction between fibrillating myocardium and applied shock. The article does this by reviewing the results of two studies, one on vulnerability to electric shocks and another on defibrillation. An overview of the modelling tools used in these studies is also provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/expphysiol.2005.030973 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!