Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd(3+) treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gel electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd(3+)-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd(3+)-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89A, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.01.105 | DOI Listing |
Beilstein J Nanotechnol
January 2025
Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky str. 1/29, Kazan 420008, Russia.
Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, CHINA.
The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB).
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad 500090, Telangana.
Ibuprofen, a widely used NSAID from the aryl propionic acid class, effectively relieves pain, fever, and inflammation. On prolonged use, it leads to gastrointestinal, hepatic, and renal toxicities, particularly gastrointestinal ulcers. These side effects are largely attributed to the carboxylic acid functional group common to NSAIDs.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, The Bronx, New York 10458, United States.
The first protocells are speculated to have arisen from the self-assembly of simple abiotic carboxylic acids, alcohols, and other amphiphiles into vesicles. To study the complex process of vesicle formation, we combined laboratory automation with AI-guided experimentation to accelerate the discovery of specific compositions and underlying principles governing vesicle formation. Using a low-cost commercial liquid handling robot, we automated experimental procedures, enabling high-throughput testing of various reaction conditions for mixtures of seven (7) amphiphiles.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
The excessive cytokine release and limited persistence represent major challenges for chimeric antigen receptor T (CAR-T) cell therapy in diverse tumors. Conventional CARs employ an intracellular domain (ICD) from the ζ subunit of CD3 as a signaling module, and it is largely unknown how alternative CD3 chains potentially contribute to CAR design. Here, we obtained a series of CAR-T cells against HER2 and mesothelin using a domain comprising a single immunoreceptor tyrosine-based activation motif from different CD3 subunits as the ICD of CARs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!