Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis.

Arthritis Res Ther

Raymond Purves Research Laboratory, Institute of Bone and Joint Research, Royal North Shore Hospital, University of Sydney, Pacific Highway, St Leonards, NSW 2065, Australia.

Published: August 2006

Osteoarthritis is a disease of multifactorial aetiology characterised by progressive breakdown of articular cartilage. In the early stages of the disease, changes become apparent in the superficial zone of articular cartilage, including fibrillation and fissuring. Normally, a monolayer of lubricating molecules is adsorbed on the surface of cartilage and contributes to the minimal friction and wear properties of synovial joints. Proteoglycan 4 is the lubricating glycoprotein believed to be primarily responsible for this boundary lubrication. Here we have used an established ovine meniscectomy model of osteoarthritis, in which typical degenerative changes are observed in the operated knee joints at three months after surgery, to evaluate alterations in proteoglycan 4 expression and localisation in the early phases of the disease. In normal control joints, proteoglycan 4 was immunolocalised in the superficial zone of cartilage, particularly in those regions of the knee joint covered by a meniscus. After the onset of early osteoarthritis, we demonstrated a loss of cellular proteoglycan 4 immunostaining in degenerative articular cartilage, accompanied by a significant (p < 0.01) decrease in corresponding mRNA levels. Early loss of proteoglycan 4 from the cartilage surface in association with a decrease in its expression by superficial-zone chondrocytes might have a role in the pathogenesis of osteoarthritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1526595PMC
http://dx.doi.org/10.1186/ar1898DOI Listing

Publication Analysis

Top Keywords

articular cartilage
12
meniscectomy model
8
early osteoarthritis
8
superficial zone
8
joints proteoglycan
8
proteoglycan
6
cartilage
6
early
5
osteoarthritis
5
proteoglycan downregulation
4

Similar Publications

Therapeutic role of aripiprazole in cartilage defects explored through a drug repurposing approach.

Sci Rep

December 2024

Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.

Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative.

View Article and Find Full Text PDF

Wood-Derived Hydrogels for Osteochondral Defect Repair.

ACS Nano

December 2024

Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and -acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils.

View Article and Find Full Text PDF

Background: In magnetic resonance imaging (MRI) segmentation research, the choice of sequence influences the segmentation accuracy. This study introduces a method to compare sequences. By aligning sequences with specific segmentation objectives, we provide an example of a comparative analysis of various sequences for knee images.

View Article and Find Full Text PDF

Tissue engineering and cartilage transplantation constitute an evolving field in the treatment of osteoarthritis, with therapeutic and clinical promise shown in autologous chondrocyte implantation. The aim of this systematic review is to explore current clinical trials that utilized autologous chondrocyte transplantation (ACT) and assess its efficacy in the treatment of osteoarthritis. PubMed, Ovid MEDLINE, and Google-Scholar (pages 1-20) were searched up until February 2023.

View Article and Find Full Text PDF

This study aimed to explore the construction of experimental animal models replicating cartilage defects across diverse load-bearing sites, compare self-repair conditions, and examine the role of mechanical stimulation in cartilage self-repair. Experimental animal models were established in rabbits to simulate full-thickness cartilage defects without penetrating the subchondral bone, at various load-bearing sites, including the posterior femoral condyle, anterior femoral condyle and femoral trochlear of knee joint, and the humerus of the shoulder joint. The successful exposure and construction of cartilage defects at the anterior femoral condyle, femoral trochlear, and posterior femoral condyle through the medial extension of surgical incision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!