Isothermal desorption of o-terphenyl thin-film bilayers was used to measure self-diffusion coefficients of supercooled o-terphenyl near the glass transition temperature (Tg=243 K). Diffusion coefficients from 10(-15.5) to 10(-12) cm2 s(-1) were obtained between 246 and 265 K. Protio and deuterio o-terphenyl were sequentially vapor deposited, then annealed to simultaneously diffuse and desorb the sample in a vacuum chamber. During the desorption of the bilayer, the concentration of each isotope was detected by a mass spectrometer, which revealed the extent of interfacial broadening. In these experiments, isotopic interdiffusion is indistinguishable from self-diffusion and the measured interfacial broadening is consistent with Fickian diffusion. The samples prepared under several different deposition conditions yielded the same self-diffusion coefficients, indicating that the experiments were conducted in the equilibrium supercooled liquid state.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2139089DOI Listing

Publication Analysis

Top Keywords

isothermal desorption
8
supercooled o-terphenyl
8
self-diffusion coefficients
8
interfacial broadening
8
desorption measurements
4
self-diffusion
4
measurements self-diffusion
4
self-diffusion supercooled
4
o-terphenyl
4
o-terphenyl isothermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!