The mixture of samarium diiodide, amine, and water (SmI2/H2O/Et3N) is known to be a particularly powerful reductant, but until now the limiting reducing power has not been determined. A series of unsaturated hydrocarbons with varying half-wave reduction potentials (E(1/2) = -1.6 to -3.4 V, vs SCE) have been treated with SmI2/H2O/Et3N and YbI2/H2O/Et3N, respectively. All hydrocarbons with potentials of -2.8 V or more positive were readily reduced with SmI2/H2O/Et3N, whereas all hydrocarbons with potentials of -2.3 V or more positive were readily reduced using YbI2/H2O/Et3N. This defines limiting values of the chemical reducing power of SmI2/H2O/Et3N to -2.8 V and of YbI2/H2O/Et3N to -2.3 V vs SCE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo052268k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!