Chaetomium thermophilum CT2 can produce extracellular cellulase with industrial value. We designed two degenerate primers to amplify catalytic domain sequence of cellobiohydrolase II ( CBH II). Full length of cDNA was obtained by rapid amplification of cDNA ends technologies. DNA sequencing revealed that cbh2 has an open reading frame of 1428bp, which encodes a putative polypeptide of 476 amino acids. The deduced amino acid sequence shows that the predicted molecular mass is 53 kD and the cbh2 consists of a fungal-type carbohydrate binding domain (CBD) separated from a catalytic domain by a linker region rich in proline/serine/threonine. PCR product consisting of the entire CBH II coding region without its signal sequences was cloned into the yeast secretive plasmid pPIC9K, which was then transformed into Pichia pastoris GS115. Highly efficient production of the cellobiohydrolase II was achieved in P. pastoris under the control of the AOX1 promoter, and the expressing level was 1.2 mg/mL by small-scale culturing. The recombinant cellobiohydrolase II was purified by using ammonium sulfate fraction, DEAE-Sepharose Fast flow chromatography. A molecular mass of the purified enzyme is 67 kD determined by SDS-PAGE and this is similar to the native cellobiohydrolase II purified from C. thermophilum CT2. The recombinant enzyme exhibited optimum catalytic activity at pH 4.0 and 50 degrees C respectively. It was thermostable at 50 degrees C and retained 50% of its original activity after 30 min at 70 d degrees C . The high level of fully active recombinant cellobiohydrolase II got from P. pastoris makes this expression system attractive for fermentor and industrial applications.
Download full-text PDF |
Source |
---|
Structure
November 2024
CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia. Electronic address:
The 5'-3' exoribonuclease Xrn2, known as Rat1 in yeasts, terminates mRNA transcription by RNA polymerase II (RNAPII). In the torpedo model of termination, the activity of Xrn2/Rat1 is enhanced by Rai1, which is recruited to the termination site by Rtt103, an adaptor protein binding to the RNAPII C-terminal domain (CTD). The overall architecture of the Xrn2/Rat1-Rai1-Rtt103 complex remains unknown.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
Endoplasmic reticulum (ER) membrane resident P5A-ATPases broadly affect protein biogenesis and quality control, and yet their molecular function remains debated. Here, we report cryo-EM structures of a P5A-ATPase, CtSpf1, covering multiple transport intermediates of the E1 → E1-ATP → E1P-ADP → E1P → E2P → E2.P → E2 → E1 cycle.
View Article and Find Full Text PDFMethods Enzymol
October 2024
Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States. Electronic address:
Yeast Sen1 and its vertebrate ortholog Senataxin (also known as SETX) are RNA-DNA resolving helicases. Sen1 and SETX are implicated in multiple critical nuclear functions not limited to but including DNA replication and repair, RNA processing, and transcription. These> 200 kDa helicases have a two-domain architecture with an N-terminal regulatory helical repeat array linked to an SF1b helicase motor core via a variable sized central linker of low complexity sequence.
View Article and Find Full Text PDFBiochem Pharmacol
November 2024
College of Chemistry, Fuzhou University, Fuzhou 350108, China. Electronic address:
Proper chromosome segregation during cell division relies on the timely dissolution of chromosome cohesion. Separase (EC3.4.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!