This article considers the precision positioning problem associated with high-speed operation of the Atomic Force Microscope (AFM), and presents an inversion-based control approach to achieve precision positioning. Although AFMs have high (nanoscale) spatial resolution, a problem with current AFM systems is that they have low temporal resolution, i.e., AFM imaging is slow. In particular, current AFM imaging cannot be used to provide three-dimensional, time-lapse images of fast processes when imaging relatively-large, soft samples. For instance, current AFM imaging of living cells takes 1-2 minutes (per image frame) - such imaging speeds are too slow to study rapid biological processes that occur in seconds, e.g., to investigate the rapid movement of cells or the fast dehydration and denaturation of collagen. This inability, to rapidly image fast biological processes, motivates our current research to increase the operating speed of the AFM. We apply an inversion-based feedback/feedforward control approach to overcome positioning problems that limit the operating speed of current AFM systems. The efficacy of the method, to achieve high-speed AFM operation, is experimentally evaluated by applying it to image collagen samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356882PMC
http://dx.doi.org/10.1111/j.1934-6093.2004.tb00195.xDOI Listing

Publication Analysis

Top Keywords

current afm
16
afm imaging
12
afm
9
high-speed afm
8
precision positioning
8
control approach
8
afm systems
8
biological processes
8
operating speed
8
imaging
6

Similar Publications

With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two aptamer modifications were employed: removing the primer binding sites and including two dithiol phosphoramidite anchor molecules. Thus, reducing fabrication time from 24 to 3 h and increasing the stability and sparseness for multi-thiol aptasensors compared to a standard aptasensor using single thiols, without a reduction in aptamer density.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized as a neurodegenerative disorder that is caused by plaque formation by accumulating β-amyloid (Aβ), leading to neurocognitive function and impaired mental development. Thus, targeting Aβ represents a promising target for the development of therapeutics in AD management. Several functionalized sulfonic acid molecules have been reported, including tramiprosate prodrug, which is currently in clinical trial III and exhibits a good response in mild to moderate AD patients.

View Article and Find Full Text PDF

Direct current magnetron sputtering was employed to fabricate In-N dual-doped SnO films, with varying concentrations of N in a mixed sputtering gas of N and argon (Ar). The quantity of -substituted O elements in the SnO lattice was confirmed through energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A comprehensive investigation of properties of the In-N dual-doped SnO films was conducted using various techniques, including X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), ultraviolet absorption spectroscopy, Hall effect measurements, and current-voltage (-) characteristic assessments.

View Article and Find Full Text PDF

Decision support guided fluid challenges and stroke volume response during high-risk surgery: a post hoc analysis of a randomized controlled trial.

J Clin Monit Comput

January 2025

Department of Anaesthesiology and Intensive Care, Bicetre hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Le Kremlin Bicetre, France.

Intravenous fluid is administered during high-risk surgery to optimize stroke volume (SV). To assess ongoing need for fluids, the hemodynamic response to a fluid bolus is evaluated using a fluid challenge technique. The Acumen Assisted Fluid Management (AFM) system is a decision support tool designed to ease the application of fluid challenges and thus improve fluid administration during high-risk surgery.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most commonly occurring brain disorder, characterized by the accumulation of amyloid-β (Aβ) and tau, subsequently leading to neurocognitive decline. 3-Amino-1-propanesulfonic acid (TPS) and its prodrug, currently under clinical trial III, serve as promising therapeutic agents targeting Aβ pathology by specifically preventing monomer-to-oligomer formation. Inspired by the potency of TPS prodrug, we hypothesized that conjugating TPS with human serum albumin (HSA) could enhance brain delivery and synergistically inhibit Aβ aggregation in mild to moderate AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!