Role of docosahexaenoic acid in neuronal plasma membranes.

Sci STKE

Howard Hughes Medical Institute, Department of Medicine, and Regional Primate Research Center, University of Washington, Seattle, WA 98195-7370, USA.

Published: February 2006

The omega-3 fatty acid docosahexaenoic acid (DHA n-3) has long been known to be a major component of phosphoglycerides in the gray matter of mammalian brains. Furthermore, early studies of synaptosomes that had been isolated from gray matter showed that the plasma membranes of the synaptosomes contained DHA n-3 that was selectively esterified to phosphatidylethanolamine, plasmenylethanolamine (alkenylacyl-glycero-phosphorylethanolamine), and phosphatidylserine. In contrast, the phosphatidylcholine in these membranes contained esterified oleic acid, and the sphingomyelin and glycolipids in the membranes contained amide-linked stearic acid instead of a mixture of this acid with other, amide-linked fatty acids. The full implications of this unusual distribution of lipid head groups, esterified fatty acids, and amide-linked fatty acids are unclear, but the phosphoglycerides and sphingosine-containing lipids appear to be distributed asymmetrically between the two leaflets of the plasma membrane lipid bilayer and are likely to contribute to a dynamic lipid substructure. Because very few neuronal plasma membranes have been isolated and characterized to date, a major challenge for the future will be to investigate the composition of the lipid bilayers of different neuronal plasma membranes and identify effects of DHA n-3-containing phosphoglycerides on the ability of the plasma membranes to perform their many different functions. The aim of this Perspective is to stimulate further work in this important area by discussing recent evidence related to the role of neuronal plasma membrane phosphoglycerides in cell signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1126/stke.3212006pe6DOI Listing

Publication Analysis

Top Keywords

plasma membranes
20
neuronal plasma
16
fatty acids
12
docosahexaenoic acid
8
dha n-3
8
gray matter
8
membranes contained
8
amide-linked fatty
8
plasma membrane
8
plasma
7

Similar Publications

Background: Liver fibrosis is a complex reparative process in response to chronic liver injuries, with limited effective therapeutic options available in clinical practice. During liver fibrosis, liver sinusoidal endothelial cells (LSECs) undergo phenotypic changes and also play a role in modulating cellular communications. Si-Wu-Tang (SWT), a traditional Chinese herbal remedy, has been extensively studied for its effectiveness in treating hematological, gynecological and hepatic diseases.

View Article and Find Full Text PDF

Trogocytosis-mediated immune evasion in the tumor microenvironment.

Exp Mol Med

January 2025

Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea.

Trogocytosis is a dynamic cellular process characterized by the exchange of the plasma membrane and associated cytosol during cell-to-cell interactions. Unlike phagocytosis, this transfer maintains the surface localization of transferred membrane molecules. For example, CD4 T cells engaging with antigen-presenting cells undergo trogocytosis, which facilitates the transfer of antigen-loaded major histocompatibility complex (MHC) class II molecules from antigen-presenting cells to CD4 T cells.

View Article and Find Full Text PDF

We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.

View Article and Find Full Text PDF

The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!