Enzymes for the biosynthesis and degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG) have been cloned and are the sn-1-selective-diacylglycerol lipases alpha and beta (DAGLalpha and beta) and the monoacylglycerol lipase (MAGL), respectively. Here, we used membranes from COS cells over-expressing recombinant human DAGLalpha to screen new synthetic substances as DAGLalpha inhibitors, and cytosolic fractions from wild-type COS cells to look for MAGL inhibitors. DAGLalpha and MAGL activities were assessed by using sn-1-[14C]-oleoyl-2-arachidonoyl-glycerol and 2-[3H]-arachidonoylglycerol as substrates, respectively. We screened known compounds as well as new phosphonate derivatives of oleic acid and fluoro-phosphinoyl esters of different length. Apart from the general lipase inhibitor tetrahydrolipstatin (orlistat) (IC50 approximately 60 nM), the most potent inhibitors of DAGLalpha were O-3640 [octadec-9-enoic acid-1-(fluoro-methyl-phosphoryloxymethyl)-propylester] (IC50 = 500 nM), and O-3841 [octadec-9-enoic acid 1-methoxymethyl-2-(fluoro-methyl-phosphinoyloxy)-ethyl ester] (IC50 = 160 nM). Apart from being almost inactive on MAGL, these two compounds showed high selectivity over rat liver triacylglycerol lipase, rat N-acylphosphatidyl-ethanolamine-selective phospholipase D (involved in anandamide biosynthesis), rat fatty acid amide hydrolase and human recombinant cannabinoid CB1 and CB2 receptors. Methylarachidonoyl-fluorophosphonate and the novel compound UP-101 [O-ethyl-O-p-nitro-phenyl oleylphosphonate] inhibited both DAGLalpha and MAGL with similar potencies (IC50 = 0.8-0.1 and 3.7-3.2 microM, respectively). Thus, we report the first potent and specific inhibitors of the biosynthesis of 2-AG that may be used as pharmacological tools to investigate the biological role of this endocannabinoid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2005.12.009 | DOI Listing |
Biochemistry
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India.
Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.
View Article and Find Full Text PDFJ Mol Endocrinol
January 2025
L Maletinska, Biochemistry, Czech Academy of Sciences, Praha, Czech Republic.
Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.
View Article and Find Full Text PDFEur J Epidemiol
January 2025
Health Sciences North Research Institute, Sudbury, ON, Canada.
Background: Opioid Agonist Treatment (OAT) is the most effective intervention for opioid use disorder (OUD), but retention has decreased due to increasingly potent drugs like fentanyl. This cohort can be used retrospectively to observe trends in service utilization, healthcare integration, healthcare costs and patient outcomes. It also facilitates the design of observational studies to mimic a prospective design.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Center for Non-Communicable Disease Management Beijing Children's Hospital, Capital Medical University, National Center for Children's Health Beijing China.
Background: The differential impact of serum lipids and their targets for lipid modification on cardiometabolic disease risk is debated. This study used Mendelian randomization to investigate the causal relationships and underlying mechanisms.
Methods: Genetic variants related to lipid profiles and targets for lipid modification were sourced from the Global Lipids Genetics Consortium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!