High-altitude natives are adapted to hypobaric hypoxia, suggestive of genetic basis of adaptation. Since endothelin-1 (ET-1) is of prime importance in high-altitude disorders in sojourners, we envisaged the role of allelic variants of ET-1 in high-altitude adaptation. Four ET-1 polymorphisms, viz., (CT)(n)-(CA)(n) repeat, -3A/-4A, G2288T, and Lys198Asn, were investigated in 426 highlanders (HLs) and 236 lowlanders (LLs). The plasma ET-1 levels, SBP and BMI were significantly lower in the HLs than those in LLs (p<0.0001). The Longer-repeats (31-45), G allele, Longer-repeats/GG, and Longer-repeats/Lys198Lys combinations were overrepresented in the HLs (p<0.0001, p=0.03, p<0.0001, and p<0.0001, respectively). The Longer-repeats, -3A/-3A, GG and Lys198Lys genotypes associated with significantly lower ET-1 levels in the HLs (p<0.0001, p=0.001, p<0.0001, and p<0.0001, respectively). Combinations of Longer-repeats with -3A/-3A, GG, and Lys198Lys genotypes, and -3A/-3A/Lys198Lys combination revealed association with lower ET-1 levels in the HLs (p<0.001). The study reports over-representation of Longer-repeats, G allele, and wild-type genotype combinations in high-altitude natives. Interaction between these alleles and association with lower ET-1 levels strengthen their association with high-altitude adaptation. Presence of such alleles in sojourners may help in acclimatization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.01.086 | DOI Listing |
J Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.
Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.
J Physiol Sci
January 2025
Johannes Wesling Klinikum Minden, University Hospital, Ruhr University Bochum, Bochum, Germany.
The digitization of aircraft cockpits places high demands on the colour vision of pilots. The present study investigates colour vision changes upon acute exposure to hypobaric hypoxia. The digital Waggoner Computerized Color Vision Test and the Waggoner D-15 were performed by 54 healthy volunteers in a decompression chamber.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China. Electronic address:
The mechanisms underlying the low incidence of myopia at high altitudes remain unclear. Choroidal thickness and the dopaminergic system have been shown to be closely associated with myopia development. This study aimed to investigate the effects of high altitude exposure on choroidal thickness and the dopaminergic system.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:
High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!