Targeting of antifibrotic drugs to hepatic stellate cells (HSC) is a promising strategy to block fibrotic processes leading to liver cirrhosis. For this purpose, we utilized the neo-glycoprotein mannose-6-phosphate-albumin (M6PHSA) that accumulates efficiently in HSC during liver fibrosis. Pentoxifylline (PTX), an antifibrotic compound that inhibits HSC proliferation and activation in vitro, was conjugated to M6PHSA. We employed a new type of platinum-based linker, which conjugates PTX via coordination chemistry rather than via covalent linkage. When incubated in plasma or in the presence of thiol compounds, free PTX was released from PTX-M6PHSA at a sustained slow rate. PTX-M6PHSA displayed pharmacological activity in cultured HSC as evidenced by changes in cell morphology and reduction of collagen I production. PTX-M6PHSA and platinum coupled PTX did not induce platinum-related toxicity (Alamar Blue viability assay) or apoptosis (caspase activation and TUNEL staining). In vivo distribution studies in fibrotic rats demonstrated specific accumulation of the conjugate in nonparenchymal cells in the fibrotic liver. In conclusion, we have developed PTX-M6PHSA employing a novel type of platinum linker, which allows sustained delivery of the drug to HSC in the fibrotic liver.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2005.12.010DOI Listing

Publication Analysis

Top Keywords

hepatic stellate
8
stellate cells
8
platinum-based linker
8
fibrotic liver
8
hsc
5
selective targeting
4
targeting pentoxifylline
4
pentoxifylline hepatic
4
cells novel
4
novel platinum-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!