Germ cell tumours (GCT) are thought to arise as the result of a defect in early development, probably shortly after arrival of the migrating primordial germ cells (PGC) in the genital ridge when, if in a male genital ridge, the germ cells arrest in mitosis, but in a female genital ridge they enter meiosis. We suggest that dysfunction of the mitotic:meiotic switch, with cells aberrantly co-expressing functions pertinent to both states, might provide the genetic instability that could initiate tumour development. If this hypothesis is correct, GCT could arise because of disruption in the function of any one of a number of different genes involved in controlling mitosis and meiosis, rather than being dependent upon a single prominent susceptibility gene. The Notch signalling system is one candidate system for controlling the switch and we have identified expression of Notch2 and Notch4 in seminomas and carcinoma in situ. Thus those two members of the Notch family are candidates for proto-oncogenes that could play a role in GCT development. We have also identified a human homologue of the synaptonemal complex protein, SCP3, and have found its apparently aberrant expression in some established EC cell lines. One possibility is that abnormal regulation of such proteins involved in the synaptonemal complex could also lead to genetic instability in PGC and so also initiate tumour development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2605.2005.00569.x | DOI Listing |
Curr Osteoporos Rep
January 2025
Department of Immunology, Tufts University, Boston, MA, 02111, USA.
Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.
Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.
Parasitol Res
January 2025
HUN-REN Veterinary Medical Research Institute, 21, Hungária Krt, 1143, Budapest, Hungary.
The European catfish (Silurus glanis) is an important species with high economic value, and its growing demand has led to intensive farming practices for it. However, this species is increasingly challenged by parasitic infections, particularly from a specific gill monopisthocotylan parasite called Thaparocleidus vistulensis. To establish effective management strategies, it is crucial to comprehend the fundamental environmental variables that could influence the reproductive and survival behavior of T.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel.
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
Preserving fertility is important in men under radiation therapy because healthy cells are also affected by radiation. Supplementation with antioxidants is a controversial issue in this process. Designing a biocompatible delivery system containing hydrophobic antioxidants to release control may solve these disagreements.
View Article and Find Full Text PDFCancer Drug Resist
December 2024
Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic.
Mutations in the mitochondrial (mt) genome contribute to metabolic dysfunction and their accumulation relates to disease progression and resistance development in cancer cells. This study explores the mutational status of the mt genome of cisplatin-resistant -sensitive testicular germ cell tumor (TGCT) cells and explores its association with their respiration parameters, expression of respiratory genes, and preferences for metabolic pathways to reveal new markers of therapy resistance in TGCTs. Using Illumina sequencing with Twist Enrichment Panel, the mutations of mt genomes of sensitive 2102EP, H12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!