Little is known about the mechanism of bladder smooth muscle differentiation. We hypothesize that epithelial-mesenchymal signaling induces the expression of smooth muscle proteins in bladder mesenchyme resulting in smooth muscle differentiation. We confirmed that smooth muscle differentiation in the mouse urinary bladder occurs first at gestational day 14 (E14) based upon immunohistochemical localization of smooth muscle alpha-actin (SMAA). To investigate murine bladder smooth muscle differentiation and epithlelial-mesenchymal signaling in the developing bladder, we analyzed gene expression profiles of intact embryonic murine bladders and separated epithelial and mesenchymal components at embryonic days E13, E14, E15, E16, and postnatal day 1 (P1). Using cDNA microarray, we identified regulators of vascular smooth muscle differentiation in bladder mesenchyme, including serum response factor (SRF) and its cofactors, ELK1 and SRF accessory protein (SAP)1, as well as two SRF-associated pathways, angiotension receptor II and transforming growth factor- beta2. Immunohistochemistry showed diffuse expression of SRF in the bladder at E12 with localization of expression to the peripheral mesenchyme at E13 and E14. Our results suggest that bladder smooth muscle differentiation may share a similar gene expression program as occurs during vascular smooth muscle differentiation. The unique structure of the urinary bladder makes it an ideal model for studies of smooth muscle differentiation and epithelial-mesenchymal signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-0436.2006.00057.xDOI Listing

Publication Analysis

Top Keywords

smooth muscle
44
muscle differentiation
32
bladder smooth
16
epithelial-mesenchymal signaling
12
urinary bladder
12
smooth
11
muscle
11
bladder
10
serum response
8
response factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!