The conductor-like screening model (COSMO) was used to investigate the solvent influence on electronic g-values of organic radicals. The previously studied diphenyl nitric oxide and di-tert-butyl nitric oxide radicals were taken as test cases. The calculations employed spin-unrestricted density functional theory and the BP and B3LYP density functionals. The g-tensors were calculated as mixed second derivative properties with respect to the external magnetic field and the electron magnetic moment. The first-order response of the Kohn-Sham orbitals with respect to the external magnetic field was determined through the coupled-perturbed DFT approach. The spin-orbit coupling operator was treated using an accurate multicenter spin-orbit mean-field (SOMF) approach. Provided that important hydrogen bonds are explicitly modeled by a supermolecule approach and that the basis set is sufficiently saturated, the COSMO calculations lead to accurate predictions of isotropic g-shifts with deviations of not more than 100 ppm relative to experiment. Very accurate results were obtained by employing a recently developed self-consistent modification of the COSMO method to real solvents (COSMO-RS), which we briefly introduce in this paper as direct COSMO-RS (D-COSMO-RS). This model gives isotropic g-shifts of similar high accuracy for water without using the supermolecule approach. This is an important result because it solves many of the problems associated with the supermolecule approach such as local minima and the choice of a suitable model system. Thus, the self-consistent D-COSMO-RS incorporates some specific solvation effects into continuum models, in particular it appears to successfully model the effects of hydrogen bonding. Although not yet widely validated, this opens a novel approach for the calculation of properties which so far only could be calculated by the inclusion of explicit solvent molecules in continuum solvation methods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp056016zDOI Listing

Publication Analysis

Top Keywords

supermolecule approach
12
conductor-like screening
8
screening model
8
model cosmo
8
real solvents
8
direct cosmo-rs
8
nitric oxide
8
respect external
8
external magnetic
8
magnetic field
8

Similar Publications

The objective of this work was to improve the solubility and discover a stable co-amorphous form of valsartan (VAL), a BCS class-II drug, by utilizing small molecule 2-Aminopyridine (2-AP) in varying molar ratios (2:1, 1:1, and 1:2), employing a solvent evaporation technique. Additionally, by way of a density functional theory (DFT)-based computational method with commercially available software, a new approach for determining the intermolecular connectivity of multi-molecular hydrogen bonding systems was proposed. The binary systems' features were characterized by PXRD, DSC, FTIR, and Raman spectroscopy, while the equilibrium solubility and dissolution was determined in 0.

View Article and Find Full Text PDF

Prediction of Redox Potentials for Ac, Th, and Pa in Aqueous Solution.

J Phys Chem A

November 2024

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.

Article Synopsis
  • Density functional theory combined with small core pseudopotentials was used to calculate the redox potentials of actinides (Ac, Th, Pa) in aqueous solution, taking into account solvation effects through various models.
  • The geometry calculations for Ac(III), Th(IV), and Pa(V) aligned well with experimental data, and the redox potentials were mostly within ±0.2 V of experimental measurements, particularly using the COSMO model.
  • The study explored the redox pathways of Pa(V/IV), revealing that redox potentials shift to more negative values at higher pH, while positive values for Th and Pa in An(I/0) contrasts with negative
View Article and Find Full Text PDF

Collective strong coupling of many molecules to the confined light modes of an optical resonator can influence the photochemistry of these molecules, but the origin of this effect is not yet fully understood. To provide atomistic insights, several approaches have been developed based on quantum chemistry or molecular dynamics methods. However, most of these methods rely on coupling a few molecules (or sometimes only one) to a single cavity mode.

View Article and Find Full Text PDF

We report the formulation and implementation of an extended Frenkel exciton model (EFEM) designed for simulating the dynamics of multichromophoric systems, taking into account the possible presence of interchromophore charge transfer states, as well as other states in which two chromophores are simultaneously excited. Our approach involves constructing a Hamiltonian based on calculations performed on monomers and selected dimers within the multichromophoric aggregate. Nonadiabatic molecular dynamics is addressed using a surface hopping approach, while the electronic wave functions and energies required for constructing the EFEM are computed utilizing the semiempirical floating occupation molecular orbitals-configuration interaction (FOMO-CI) electronic structure method.

View Article and Find Full Text PDF

Study of Nonlinear Optical Properties of a Self-Healing Organic Crystal.

ACS Omega

September 2024

Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia, Goiás, Brazil.

Recently a noncentrosymmetric single crystal of a dibenzoate derivative, namely, dimethyl-4,4'-(methylenebis(azanediyl))dibenzoate, with second harmonic generation activities at 405 nm and ultrafast self-healing activity was reported by Mondal et al. in in 2023. Here, the linear and nonlinear optical properties of this notable molecular crystal were simulated using 1,611,464 atoms in the Supermolecule approach at the DFT/CAM-B3LYP/aug-cc-pVTZ level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!