The conductor-like screening model (COSMO) was used to investigate the solvent influence on electronic g-values of organic radicals. The previously studied diphenyl nitric oxide and di-tert-butyl nitric oxide radicals were taken as test cases. The calculations employed spin-unrestricted density functional theory and the BP and B3LYP density functionals. The g-tensors were calculated as mixed second derivative properties with respect to the external magnetic field and the electron magnetic moment. The first-order response of the Kohn-Sham orbitals with respect to the external magnetic field was determined through the coupled-perturbed DFT approach. The spin-orbit coupling operator was treated using an accurate multicenter spin-orbit mean-field (SOMF) approach. Provided that important hydrogen bonds are explicitly modeled by a supermolecule approach and that the basis set is sufficiently saturated, the COSMO calculations lead to accurate predictions of isotropic g-shifts with deviations of not more than 100 ppm relative to experiment. Very accurate results were obtained by employing a recently developed self-consistent modification of the COSMO method to real solvents (COSMO-RS), which we briefly introduce in this paper as direct COSMO-RS (D-COSMO-RS). This model gives isotropic g-shifts of similar high accuracy for water without using the supermolecule approach. This is an important result because it solves many of the problems associated with the supermolecule approach such as local minima and the choice of a suitable model system. Thus, the self-consistent D-COSMO-RS incorporates some specific solvation effects into continuum models, in particular it appears to successfully model the effects of hydrogen bonding. Although not yet widely validated, this opens a novel approach for the calculation of properties which so far only could be calculated by the inclusion of explicit solvent molecules in continuum solvation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp056016z | DOI Listing |
Molecules
November 2024
School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China.
The objective of this work was to improve the solubility and discover a stable co-amorphous form of valsartan (VAL), a BCS class-II drug, by utilizing small molecule 2-Aminopyridine (2-AP) in varying molar ratios (2:1, 1:1, and 1:2), employing a solvent evaporation technique. Additionally, by way of a density functional theory (DFT)-based computational method with commercially available software, a new approach for determining the intermolecular connectivity of multi-molecular hydrogen bonding systems was proposed. The binary systems' features were characterized by PXRD, DSC, FTIR, and Raman spectroscopy, while the equilibrium solubility and dissolution was determined in 0.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.
J Chem Phys
October 2024
Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
Collective strong coupling of many molecules to the confined light modes of an optical resonator can influence the photochemistry of these molecules, but the origin of this effect is not yet fully understood. To provide atomistic insights, several approaches have been developed based on quantum chemistry or molecular dynamics methods. However, most of these methods rely on coupling a few molecules (or sometimes only one) to a single cavity mode.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2024
Dipartimento di Chimica e Chimica Industriale, University of Pisa, 56124 Pisa, Italy.
We report the formulation and implementation of an extended Frenkel exciton model (EFEM) designed for simulating the dynamics of multichromophoric systems, taking into account the possible presence of interchromophore charge transfer states, as well as other states in which two chromophores are simultaneously excited. Our approach involves constructing a Hamiltonian based on calculations performed on monomers and selected dimers within the multichromophoric aggregate. Nonadiabatic molecular dynamics is addressed using a surface hopping approach, while the electronic wave functions and energies required for constructing the EFEM are computed utilizing the semiempirical floating occupation molecular orbitals-configuration interaction (FOMO-CI) electronic structure method.
View Article and Find Full Text PDFACS Omega
September 2024
Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia, Goiás, Brazil.
Recently a noncentrosymmetric single crystal of a dibenzoate derivative, namely, dimethyl-4,4'-(methylenebis(azanediyl))dibenzoate, with second harmonic generation activities at 405 nm and ultrafast self-healing activity was reported by Mondal et al. in in 2023. Here, the linear and nonlinear optical properties of this notable molecular crystal were simulated using 1,611,464 atoms in the Supermolecule approach at the DFT/CAM-B3LYP/aug-cc-pVTZ level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!