Cell cycle specific induction of HL-60 cell differentiation and apoptosis by mycophenolic acid.

Cell Death Differ

Cancer Research Campaign Molecular and Cellular Pharmacology Group, School of Biological Sciences, University of Manchester, M13 9PT, UK.

Published: December 1997

HL-60 cells undergo terminal differentiation and apoptosis in response to different types of sub-toxic and toxic perturbations respectively. The mechanism by which cells sense different amounts of perturbation to activate pathways that lead to the engagement of a relevant biological response is not known. The response of HL-60 cells to treatment with the immunosuppressant mycophenolic acid (MPA), a specific inhibitor of dGTP/GTP-synthesis, allowed quantitation of a metabolic perturbation which triggered a cellular response. 1.5 microM MPA induced 38% terminal differentiation to CD14 positive, early monocyte-like cells and 22% cell death by apoptosis, whereas 3 microM MPA induced 70% apoptosis but no differentiation. Despite the difference in biological outcomes, 72 h exposure to both 1.5 microM and 3 microM MPA caused a similar ( approximately 75%) depletion of total GTP levels. Cells synchronized by centrifugal elutriation were treated with MPA. Elutriated cells were overall less sensitive to the effects of MPA but 3 microM MPA induced significantly less apoptosis and more differentiation in an elutriation-enriched G1-population than in a population normally distributed in the cell cycle, suggesting that the effects of MPA in S-phase may subsequently lead to cell death. However, analysis of apoptosis by using a terminal deoxynucleotidyltransferase assay and measurement of bromodeoxyuridine incorporation showed that apoptosis was engaged in G1. Analysis of the phosphorylation status of the retinoblastoma protein demonstrated that Rb was hypophosphorylated prior to apoptosis and that in apoptotic cells, separated by flow cytometry, Rb protein was absent, presumably due to proteolysis. The loss of Rb protein did not appear to permit transit to S-phase, and was not accompanied by an expression of c-Myc. Surprisingly, therefore, an antimetabolite inducing a loss of GTP brought about cell death by apoptosis in the G1 phase of the cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cdd.4400300DOI Listing

Publication Analysis

Top Keywords

microm mpa
16
cell cycle
12
mpa induced
12
cell death
12
apoptosis
9
differentiation apoptosis
8
mycophenolic acid
8
hl-60 cells
8
terminal differentiation
8
mpa
8

Similar Publications

Purpose: To determine the bond strength, nanoleakage and interfacial morphology of four self-etch adhesives bonded to superficial dentin.

Methods: Microtensile (MT) (n= 15) and single plane shear (SP) (n= 8) bond tests were performed using human dentin polished through 320-grit SiC paper. Clearfil Protect Bond (PB), Clearfil S3 Bond (S3), Prompt L-Pop (PLP) and G-Bond (GB) were used according to their manufacturers' instructions.

View Article and Find Full Text PDF

Objective: To verify established the total quantum statistic moments model with astragaloside IV, paeoniflorin, tetramethylpyrazine in Buyanghuanwu injection, in order to establish a pharmacokinetic experimental method with multi-component traditional Chinese medicine (TCM) compound system.

Method: The RP-HPLC was adopted, with the chromatographic column of C18, 4.6 mm x 250 mm, 5 microm.

View Article and Find Full Text PDF

A new interface element with progressive damage and osseointegration for modeling of interfaces in hip resurfacing.

Proc Inst Mech Eng H

March 2013

Laboratoire de recherche en Imagerie et Orthopédie (LIO), Ecole de technologie supérieure, Montreal, QC, Canada.

Finite element models of orthopedic implants such as hip resurfacing femoral components usually rely on contact elements to model the load-bearing interfaces that connect bone, cement and implant. However, contact elements cannot simulate progressive degradation of bone-cement interfaces or osseointegration. A new interface element is developed to alleviate these shortcomings.

View Article and Find Full Text PDF

Scaffold based bone tissue engineering (BTE) has made great progress in regenerating lost bone tissue. Materials of natural and synthetic origin have been used for scaffold fabrication. Scaffolds derived from natural polymers offer greater bioactivity and biocompatibility with mammalian tissues to favor tissue healing, due to their similarity to native extracellular matrix (ECM) components.

View Article and Find Full Text PDF

A combined method of tricalcium phosphate (TCP) scaffold production, which comprised negative mold and scaffold fabrication, was reported in this study. The negative mold structure was designed by computer and fabricated by fused deposition modeling (FDM) technology, while the TCP scaffold was produced by freeze-drying technology under different prefreezing temperatures of -10 degrees C, -30 degrees C, and -86 degrees C and thermal treatment to get beta-TCP. The scaffold structure was evaluated with X-ray, scanning electron microscopy (SEM), compressive mechanical testing, and micro-computerized tomography (micro-CT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!