Neurofibrillary tangles (NFTs) are a characteristic neuropathological feature of Alzheimer's disease (AD), and molecular chaperones appear to be involved in the removal of disease-associated hyperphosphorylated tau, a primary component of NFTs. Here, novel HSP90 inhibitors were used to examine the impact of chaperone elevation on clearance of different tau species in transfected cells using a unique quantitative assay. The HSP90 inhibitors reduced levels of tau phosphorylated at proline-directed Ser/Thr sites (pS202/T205, pS396/S404) and conformationally altered (MC-1) tau species, an epitope that is immeasurable by standard Western blot techniques. The selective clearance of these phospho-tau species and MC-1 tau was mediated via the proteasome, while lysosomal-mediated tau degradation seems to lack specificity for certain tau species, suggesting a more general role in total tau removal. Interestingly, tau phosphorylated at S262/S356 within the tau microtubule binding domain was minimally affected by chaperone induction. Overall, our data show that chaperone induction results in the selective clearance of specific phospho-tau and conformationally altered tau species mediated by the proteasome; however, the apparent stability of pS262/S356 tau may also explain why MARK is able to regulate normal tau function yet still be linked to the initiation of pathogenic tau hyperphosphorylation in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.05-5343fje | DOI Listing |
Transl Androl Urol
December 2024
Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China.
Background: Para-phenylenediamine (PPD) is a crystalline solid that belongs to the aromatic amine group, widely used in the manufacturing of various dyes. PPD exhibits toxic effects on female hormone stability, ovarian function, and embryo development. Although studies have shown that PPD exposure can damage oocyte quality in female mice, research on its effects on male reproductive capability, particularly on human sperm quality and function, is limited.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Genomics Research Center, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica; Institute of Biochemical Sciences, National Taiwan University; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan. Electronic address:
Tauopathies cover a range of neurodegenerative diseases in which natively unfolded tau protein aggregates and spreads in the brain during disease progression. To gain insights into the mechanism of tau structure and spreading, here, we examined the biochemical and cellular properties of human full-length wild-type and familial mutant tau, ΔK280, with a deletion at lysine 280. Our results showed that both wild-type and mutant tau are predominantly monomeric by analytical ultracentrifugation.
View Article and Find Full Text PDFCommun Biol
January 2025
Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs.
View Article and Find Full Text PDFJ Control Release
January 2025
College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea. Electronic address:
Alzheimer's disease (AD) is the most commonly occurring brain disorder, characterized by the accumulation of amyloid-β (Aβ) and tau, subsequently leading to neurocognitive decline. 3-Amino-1-propanesulfonic acid (TPS) and its prodrug, currently under clinical trial III, serve as promising therapeutic agents targeting Aβ pathology by specifically preventing monomer-to-oligomer formation. Inspired by the potency of TPS prodrug, we hypothesized that conjugating TPS with human serum albumin (HSA) could enhance brain delivery and synergistically inhibit Aβ aggregation in mild to moderate AD.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. Electronic address:
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder globally, with no effective treatment available yet. A crucial pathological hallmark of AD is the accumulation of hyperphosphorylated tau protein, which is deteriorated by reactive oxygen species (ROS) and neuroinflammation in AD progression. Thus, alleviation of ROS and inflammation has become a potential therapeutic strategy in many studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!