A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. | LitMetric

Combinatorial regulation by transcription factor complexes is an important feature of eukaryotic gene regulation. Here, we propose a new method for identification of interactions between transcription factors (TFs) that relies on the relationship of their binding sites, and we test it using Saccharomyces cerevisiae as a model system. The algorithm predicts interacting TF pairs based on the co-occurrence of their binding motifs and the distance between the motifs in promoter sequences. This allows investigation of interactions between TFs without known binding motifs or expression data. With this approach, 300 significant interactions involving 77 TFs were identified. These included more than 70% of the known protein-protein interactions. Approximately half of the detected interacting motif pairs showed strong preferences for particular distances and orientations in the promoter sequences. These one dimensional features may reflect constraints on allowable spatial arrangements for protein-protein interactions. Evidence for biological relevance of the observed characteristic distances is provided by the finding that target genes with the same characteristic distances show significantly higher co-expression than those without preferred distances. Furthermore, the observed interactions were dynamic: most of the TF pairs were not constitutively active, but rather showed variable activity depending on the physiological condition of the cells. Interestingly, some TF pairs active in multiple conditions showed preferences for different distances and orientations depending on the condition. Our prediction and characterization of TF interactions may help to understand the transcriptional regulatory networks in eukaryotic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1361616PMC
http://dx.doi.org/10.1093/nar/gkj487DOI Listing

Publication Analysis

Top Keywords

prediction characterization
8
interactions
8
characterization interactions
8
interactions transcription
8
transcription factors
8
saccharomyces cerevisiae
8
binding motifs
8
promoter sequences
8
protein-protein interactions
8
preferences distances
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!