Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oral vaccination of fish is an effortless and stress free immunisation method which can be used for almost any age. However, vaccination via the mucosal route does have disadvantages. For example, the vaccine may induce tolerance and has to be protected to escape digestion. Also the vaccine should be efficiently delivered to immune-competent cells in the gut or other lymphoid organs. In addition, it should be cost effective. Here we present a novel fish vaccination model using potato tubers as vaccine production and delivery system. The model vaccines discussed here include fusion proteins consisting of a gut adhesion molecule (LTB) and a viral peptide or green fluorescent protein (GFP) expressed in potato tubers. The adhesion molecule mediates binding to and uptake from the gut, whereas the viral peptide or GFP functions as model vaccine antigen provoking the induction of an immune response. We demonstrate that fusion to LTB facilitates an elevated uptake of the model vaccines in carp gut mucosa. The plant-derived fusion proteins also elicit a specific systemic humoral immune response upon oral application of crude tuber material incorporated into a standard dietary feed pellet. The data presented here show the promising potentials of the plant as a production system for oral vaccines in aquaculture and feed mediated immunisation of fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2005.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!