Binuclear, mixed valence copper complexes with a [Cu(+1)(.5), Cu(+1)(.5)] redox state and S = (1)/(2) can be stabilized with rigid azacryptand ligands. In this system the unpaired electron is delocalized equally over the two copper ions, and it is one of the very few synthetic models for the electron mediating Cu(A) site of nitrous oxide reductase and cytochrome c oxidase. The spatial and electronic structures of the copper complex in frozen solution were obtained from the magnetic interactions, namely the g-tensor and the (63,65)Cu, (14)N, (2)H, and (1)H hyperfine couplings, in combination with density functional theory (DFT) calculations. The magnetic interactions were determined from continuous wave (CW) electron paramagnetic resonance (EPR), pulsed electron nuclear double resonance (ENDOR), two-dimensional TRIPLE, and hyperfine sublevel correlation spectroscopy (HYSCORE) carried out at W-band or/and X-band frequencies. The DFT calculated g and Cu hyperfine values were in good agreement with the experimental values showing that the structure in solution is indeed close to that of the optimized structure. Then, the DFT calculated hyperfine parameters were used as guidelines and starting points in the simulations of the various experimental ENDOR spectra. A satisfactory agreement with the experimental results was obtained for the (14)N hyperfine and quadrupole interactions. For (1)H the DFT calculations gave good predictions for the hyperfine tensor orientations and signs, and they were also successful in reproducing trends in the magnitude of the various proton hyperfine couplings. These, in turn, were very useful for ENDOR signals assignments and served as constraints on the simulation parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja056207fDOI Listing

Publication Analysis

Top Keywords

dft calculations
12
binuclear mixed
8
mixed valence
8
valence copper
8
magnetic interactions
8
14n hyperfine
8
hyperfine couplings
8
dft calculated
8
calculated hyperfine
8
agreement experimental
8

Similar Publications

In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.

View Article and Find Full Text PDF

Experimental and DFT Studies of Intermolecular Interaction-Assisted Oxindole Cyclization Reaction of Di-t-butyl 2-Aminophenyl-2-methyl Malonate.

Chem Pharm Bull (Tokyo)

January 2025

Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Density functional theory calculations on the cyclization of di-t-butyl 2-(2-aminophenyl)-2-methyl malonate (1) to t-butyl 3-methyloxindole-3-carboxylate (2) reveal that acetic acid-assisted protonation of the carbonyl oxygen atom reduces the activation Gibbs free energy significantly lower than methanol-assisted pathways. Experimental data confirm that reaction concentration plays a pivotal role in oxindole formation. Experimental results also indicate distinct reaction mechanisms at low and high concentrations.

View Article and Find Full Text PDF

A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.

View Article and Find Full Text PDF

Designing and employing enzyme inhibitors against viral enzymes is one of the innovative and efficient approaches to treating viral diseases. These inhibitors can disrupt the viral replication cycle by deactivating vital enzymes, thereby curbing the spread of viral infections by reducing their population. So far, inhibitors have been designed, validated, and introduced for these enzymes.

View Article and Find Full Text PDF

QSAR modeling to describe n-octanol-water partition coefficients of perfluorinated/polyfluorinated alkyl compounds.

Mar Pollut Bull

January 2025

School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China.

The widespread use of perfluoro/polyfluoroalkyl compounds (PFACs) makes it inevitable for them to be released into and affect the environment, and the octanol-water partition coefficient (logK) is a key indicator for evaluating the environmental behavior of trace pollutants and their impact on the environment. However, the determination of logK using experimental means is often time-consuming and laborious, or even unattainable. Therefore, the logKow of 20 per/polyfluoroalkyl compounds obtained from the PubChem database was selected as the object of study, and the 41 chemical descriptors required for modeling were obtained by density-functional theory calculations, and it was found that only two molecular descriptors (A, V) were significantly correlated with the logK, with the correlation of the descriptor A being the was the strongest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!