Electrochemical synthesis and fabrication of gold nanostructures based on poly(N-vinylpyrrolidone).

Chemphyschem

Key Laboratory for Colloid and Interface Chemistry of State, Education Ministry, Shandong University, Jinan 250100 (China).

Published: February 2006

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200500398DOI Listing

Publication Analysis

Top Keywords

electrochemical synthesis
4
synthesis fabrication
4
fabrication gold
4
gold nanostructures
4
nanostructures based
4
based polyn-vinylpyrrolidone
4
electrochemical
1
fabrication
1
gold
1
nanostructures
1

Similar Publications

Extracting Thin Film Structures of Energy Materials Using Transformers.

ACS Phys Chem Au

January 2025

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Neutron-Transformer Reflectometry Advanced Computation Engine (), a neural network model using a transformer architecture, is introduced for neutron reflectometry data analysis. It offers fast, accurate initial parameter estimations and efficient refinements, improving efficiency and precision for real-time data analysis of lithium-mediated nitrogen reduction for electrochemical ammonia synthesis, with relevance to other chemical transformations and batteries. Despite limitations in generalizing across systems, it shows promises for the use of transformers as the basis for models that could accelerate traditional approaches to modeling reflectometry data.

View Article and Find Full Text PDF

We report on the synthesis and characterization of an imine-type nickel complex produced the complexation of an generated 2-(iminomethyl)phenol ligand with Ni ion. The use of this complex as an electrocatalyst for H evolution in a DMF solution, with acetic acid as the proton source, was investigated in detail, employing both experimental analyses (electrochemical analysis, spectroscopy analysis) and theoretical analysis (plateau current analysis). The overpotential required for H evolution is about 590 mV with a faradaic efficiency of 49% after 3 hours bulk electrolysis, competing with the two-electron reduction of free-imine groups in the ligand.

View Article and Find Full Text PDF

A novel poly(amidoamine)-modified electrolyte-insulator-semiconductor-based biosensor for label-free detection of ATP.

Anal Methods

January 2025

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.

View Article and Find Full Text PDF

Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property.

View Article and Find Full Text PDF

Advances in Electrochemical Nitrite Reduction toward Nitric Oxide Synthesis for Biomedical Applications.

Adv Healthc Mater

January 2025

Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.

Nitric oxide (NO) is an essential molecule in biomedicine, recognized for its antibacterial properties, neuronal modulation, and use in inhalation therapies. The effectiveness of NO-based treatments relies on precise control of NO concentrations tailored to specific therapeutic needs. Electrochemical generation of NO (E-NOgen) via nitrite (NO ) reduction offers a scalable and efficient route for controlled NO production, while also addressing environmental concerns by reducing NO pollution and maintaining nitrogen cycle balance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!