In the present study, the molecular mechanism underlying the up-regulatory effect of estradiol (E2) on mouse insulin receptor substrate-1 (IRS-1) promoter was investigated in CHO cells on which the same promoter had first been functionally characterized. The mouse IRS-1 promoter bears four consensus half Estrogen Responsive Elements (ERE) sequences and thirteen AP-1- and ten Sp1-binding elements. We performed molecular dissection of this promoter gene providing 3' different deleted constructs, containing the same AP-1 rich region with a progressively increased number of ERE half sites located downstream. None of these constructs was responsive to E2, while a downstream region (nt -1420 to -160) rich in GC elements was induced by E2. However, the latter region lost its intrinsic E2 responsiveness when the whole IRS-1 promoter was mutated for deletion in all four ERE half sites. Deletion analysis of the ERE half sites demonstrated that only ERE located at the position -1500 to -1495, close to the GC-rich region, was able to maintain the induced activatory effect of E2 on the IRS-1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays identified the region containing the half ERE/Sp1 (nt -1500 to -1477) as the one conferring E2 responsiveness to the whole promoter. This effect occurs through the functional interaction between E2/ERalpha and Sp1.

Download full-text PDF

Source
http://dx.doi.org/10.1677/jme.1.01848DOI Listing

Publication Analysis

Top Keywords

irs-1 promoter
12
ere half
12
half sites
12
mouse insulin
8
insulin receptor
8
receptor substrate-1
8
promoter
7
half
5
ere
5
region
5

Similar Publications

Article Synopsis
  • * Mice with Vd1 deletion developed cardiac hypertrophy within 12 weeks and progressed to heart failure by 28 weeks, showing signs of lipid accumulation and metabolic disruptions typical in cardiomyopathy associated with obesity and diabetes.
  • * The research reveals that decreased IRS-1 expression in the hearts of these mice was linked to increased expression of FoxO1, a transcription factor affecting metabolism; manipulating Myocardin levels in cardiomyocytes was able to correct metabolic gene expression
View Article and Find Full Text PDF

Background: An activated, proinflammatory endothelium is a key feature in the development of complications of obesity and type 2 diabetes and can be caused by insulin resistance in endothelial cells.

Methods: We analyzed primary human endothelial cells by RNA sequencing to discover novel insulin-regulated genes and used endothelial cell culture and animal models to characterize signaling through CXCR4 (C-X-C motif chemokine receptor 4) in endothelial cells.

Results: CXCR4 was one of the genes most potently regulated by insulin, and this was mediated by PI3K (phosphatidylinositol 3-kinase), likely through FoxO1, which bound to the CXCR4 promoter.

View Article and Find Full Text PDF

Neural stem and progenitor cell (NSPC) depletion may play a crucial role in the cognitive impairment observed in many age-related non-communicable diseases. Insulin resistance affects brain functions through a plethora of mechanisms that remain poorly understood. In an experimental model of insulin resistant NSPCs, we identified a novel molecular circuit relying on insulin receptor substrate-1 (IRS-1)/ Forkhead box O (FoxO) signaling cascade and inhibiting the recruitment of transcription factors FoxO1 and FoxO3a on the promoters of genes regulating proliferation and self-renewal.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) 21 is an endocrine growth factor mainly secreted by the liver in response to a ketogenic diet and alcohol consumption. FGF21 signaling requires co-receptor β-klotho (KLB) co-acting with FGF receptors, which has pleiotropic metabolic effects, including induced hepatic fatty acid oxidation and ketogenesis, in human and animal models of obesity. We examined the hepatocyte-specific enhancer/promoter of FGF21 expression plasmids in high-fat diet-fed mice for 12 weeks.

View Article and Find Full Text PDF

Endothelial cell insulin resistance contributes to the development of vascular complications in diabetes. Hypoxia-inducible factors (HIFs) modulate insulin sensitivity, and we have previously shown that a negative regulator of HIF activity, CREB-binding protein/p300 (CBP/p300) interacting transactivator-2 (CITED2), is increased in the vasculature of people with type 2 diabetes. Therefore, we examined whether CITED2 regulates endothelial insulin sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!